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a b s t r a c t

Image denoising is an important task in image processing. The interest in using a
fractional mask window operator based on fractional calculus has grown for image
denoising. This paper mainly introduces the concept of fractional calculus and proposes a
new mathematical method in using fractional Alexander polynomials for image denoising.
The structures of n�n fractional mask windows on eight directions of this algorithm are
constructed. Finally, we measure the denoising performance by employing experiments
based on visual perception and by using peak signal-to-noise ratios. The experiments
illustrate that the improvements achieved are compatible with other standard smoothing
filters.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Noise is any undesired signal that contaminates an
image. Digital image acquisition is the primary process
by which noise appears in digital images, converting an
optical image into a continuous electrical signal. Noise,
arising from a variety of sources, is inherent to all electronic
image sensors and electronic components in the image
environment. The goal of image denoising methods is to
recover the original image contaminated by noise. Removing
noise from the original signal remains an interesting topic for
researchers. Several methods have been proposed to remove
the noise and recover the true image, with each approach
having its advantages and limitations [1].

Image denoising refers to the process of recovering a
digital image that has been contaminated by all kinds of
noise, while preserving as much as possible the textures
and edges present in the image. Image denoising consid-
ered as an important task in image segmentation, feature

extraction, and texture analysis. Traditionally, linear mod-
els, such as the Gaussian filter, have been commonly used
to reduce noise. These methods perform well in the flat
regions of images. However, their limitation is the inability
to well-preserve the edges. The nonlinear model, however,
can handle edges better than linear models. Another
denoising method known as neighborhood filtering pre-
serves a pixel by obtaining the average of the values of its
neighbors [2]. Recently, many scholars have applied the
theory of fractional calculus to image processing. Frac-
tional calculus and its applications are important in several
diverse areas of mathematical, physical, and engineering
sciences. Fractional calculus generalizes ideas of the calculus
of integrals and the derivatives of any arbitrary real or
complex order. The advantages of fractional derivatives are
obvious in modeling the mechanical and electrical properties
of real materials, as well as in the description of properties of
gases, liquids, rocks, and in many other fields [3,4].

Studies on fractional calculus that involve different
operators, such as Riemann–Liouville, Erd'elyi–Kober,
Weyl–Riesz, Caputo, and Grünwald–Letnikov operators,
have evolved during the past 40 years, and have extended
in other fields. Fractional calculus in the field of image
processing has gotten considerable attention in image
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texture enhancement [5–7] and image denoising [8–11].
All the results that are based on fractional calculus
operators showed that these methods are effective and
reliable, and resulted in high levels of permanent immu-
nity against different types of noise.

The fractional integral is extensively used in image
denoising algorithms. Hu et al. [8,12] proposed a fractional
integral denoising algorithm and the implementation of a
fractional integral filter using fractional integral mask
windows on eight directions based on fractional calculus
Riemann–Liouville definition. Simulation experiments
showed the feasibility of the proposed fractional integral
denoising algorithm. Guo et al. [13] proposed an image
denoising algorithm using fractional integral mask
windows based on the Grünwald–Letnikov definition of
fractional calculus. Grünwald and Letnikov achieved fine-
tuning of image denoising by setting a smaller fractional
order and controlled the effect of image denoising by
iteration.

In our previous study [9], we proposed a novel digital
image denoising algorithm based on the generalized Srivas-
tava–Owa fractional integral operator. The results illustrated
that the proposed algorithm has a good upgrading of the
denoised image. For image texture enhancement, Jalab and
Ibrahim [5] proposed a texture enhancement technique using
the fractional order Savitzky–Golay differentiator. This tech-
nique computes the generalized fractional order derivative of
the input image using the sliding weight window over the
image. Jalab and Ibrahim [6] proposed a texture enhancement
technique for medical images using fractional differential
mask windows based on the Srivastava–Owa fractional
operators. Pu et al. [14] proposed fractional differential mask
windows based on Grünwald–Letnikov and Riemann–Liou-
ville for multiscale texture enhancement using six fractional
differential masks. Experiments proved that the nonlinearly
enhancing complex texture in a smooth area by fractional
differential-based approach approves to be visibly better than
that by traditional integral-based algorithms. Gao et al. [15]
proposed image enhancement based on improved fractional
differentiation by piecewise quadratic interpolation equation.
Experiments showed that for texture-rich digital image, the
capability of nonlinearly enhancing comprehensive texture
details by improved fractional differentiation is obvious.

In this paper, we utilize the concept of fractional
calculus for image denoising to generalize the Alexander
polynomial in two approaches, namely, Alexander poly-
nomial–fractional differential (AFD) and Alexander poly-
nomial–fractional integral (AFI).

The Alexander polynomials advantage over the other
techniques is that these polynomials can be computed by
utilizing a skein relation, which can be employed in
various topics in mathematics and physics, such as opera-
tor algebras and statistical mechanics [16].

The structures of n�n fractional mask windows of
these algorithms are constructed. The denoising perfor-
mance is measured by employing experiments based on
the visual perception and by using peak signal-to-noise
ratio (PSNR). The remainder of this paper is organized as
follows. In Section 2, we introduce the generalized frac-
tional differential and fractional integral of the Alexander
polynomial. The construction of the fractional differential

mask windows, which is the new method proposed in this
work, is presented in Section 3. The experimental results
and the comparison with other studies are shown in
Sections 4 and 5, respectively. Finally, the conclusion is
presented in Section 6.

2. Alexander polynomial

The Alexander polynomial is a knot invariant created in
1923 by J.W. Alexander, with integer coefficients correspond-
ing to each knot type. The Alexander polynomial was the only
known knot polynomial until the Jones polynomial was
derived in 1984. The Alexander polynomial is the main tool
used to discuss a pair of curves known as a Zariski pair. This
pair can be defined as follows: a couple of curves C1 and C2 of
equal degree is used to design a Zariski pair. If neighborhoods
exist, then TðCiÞ � P2 (projective plane) of Ci; i¼ 1;2 such
that ðTðC1; C1ÞÞ and ðTðC2;C2ÞÞ are diffeomorphic, while the
pairs ðP2;C1Þ and ðP2;C2Þ are not homeomorphic (topologi-
cally not equivalent). Our aim is to construct two types of
mask windows utilizing the Alexander polynomial and its
generalization.

Definition 1. The Alexander polynomial is written as [17]

ΔðtÞ ¼ ∏
d�1

n ¼ 1
ΔnðtÞℓn ; n¼ 1; :::;d�1 ð1Þ

where ℓn is positive integer and

ΔnðtÞ ¼ t�exp
2nπi
d

� �� �
t�exp �2nπi

d

� �� �
:

From (1), we can conclude the following ΔnðtÞ:
Δ1 ¼ Δ11 ¼ t2�

ffiffiffi
3

p
tþ1;

Δ2 ¼ Δ10 ¼ t2�tþ1;

Δ3 ¼ Δ9 ¼ t2þ1;

Δ4 ¼ Δ8 ¼ t2þtþ1;

Δ5 ¼ Δ7 ¼ t2þ
ffiffiffi
3

p
tþ1;

Δ6 ¼ ðtþ1Þ2: ð2Þ

2.1. Fractional calculus

The idea of fractional calculus was proposed over 300
years ago. Abel, in 1823, investigated the generalized tauto-
chrone problem and, for the first time, applied fractional
calculus techniques in a physical problem. Liouville subse-
quently applied fractional calculus to problems in potential
theory. Since that time, fractional calculus has captured the
attention of many researchers in all areas of sciences [4].

This subsection deals with some preliminaries and
notations regarding fractional calculus.

Definition 2. The fractional (arbitrary) order integral of
the function f of order α40 is defined by

Iαaf ðtÞ ¼
Z t

a

ðt�τÞα�1

ΓðαÞ f ðτÞdτ:

when a¼ 0; we write Iαaf ðtÞ ¼ f ðtÞnϕαðtÞ; where ðnÞ denoted
the convolution product, ϕαðtÞ ¼ ðtα�1=ΓðαÞÞ; t40 and
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