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a b s t r a c t

This paper considers the problem of detecting and estimating an unknown occurring
interval signal in correlated Gaussian noise, which is often arisen in signal processing
society, e.g., identifying the onset times of a seismic wave and detecting a distributed
target in unknown occurring range cells. We propose the novel Generalized Likelihood
Ratio Test (GLRT) algorithm, where the Maximum Likelihood Estimations (MLEs) of the
unknown occurring interval are obtained through a Dynamic Programming (DP) method
adaptively without the secondary data. Unlike the classic Sequential Probability Ratio Test
(SPRT) methods which consist of an on-line detector before an off-line estimator, the
proposed GLRT outputs the decision result and the estimations at the same time. The per-
formances of the proposed algorithm are evaluated by numerical simulations as well as
the applications of detecting and suppressing the transient interference in a radar
operated on High-Frequency (HF) band with real data.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

A signal with unknown occurring interval is often arisen in
earthquake wave, radar signal, and many other signal families.
For example, in the earthquake monitoring, the seismic waves
with unknown onset time and duration are with respect to
the earthquake randomly [1]; in the High Resolution Radars
(HRRs), the returns of targets, e.g., aircrafts, are often dis-
tributed in multiple range cells [2]; in the sky-wave Over the
Horizonal Radars (OTHRs), the random occurring transient
interferences in the ionosphere hold a few seconds during the
Coherent Pulse Interval (CPI) [3], and so on.

To detect and estimate the signal with unknown occurring
interval is an important issue and has received considerable
attention recently. According to the mathematics approach,
these works can be classified into three categories summarily.
The first category works adopt the Sequential Probability Ratio

Test (SPRT),1 which generally assumes that the interesting
signal resulted in only one change of the observations
sequence [5]. In the case that the change is in the mean
value, i.e., the additive change, the on-line Cumulative Sum
(CUSUM) detector and its off-line change time estimator are
developed in [6,7]. Although the CUSUM is still with crucial
interest, it will be invalid when the change is in the behavior
of spectrum [8], i.e., the non-additive change.2 Then, by
modeling the non-additive change to a small-disturbance
Auto-Regressive (AR) process, the Local Linear Hypotheses
CUSUM (LLH-CUSUM) [10] and the Local Composite Hypoth-
eses CUSUM (LCH�χ 2 �CUSUM, also called LCH-GLRT) [11]
with their off-line estimators are proposed. As the local
approximation SPRT methods, they are more suitable for the
low Signal-Noise-Ratio (SNR) [12].

The second category works employ the Optimal Stopping
(OS) approach, which is a method to find the supremum of a
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1 The details of the SPRT can be referred to [4].
2 In this paper, the definitions of the additive change and non-additive

change are referred to [9].
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stochastic process on a filtered probability space [13], for
example, portfolio re-balancing and choosing optimal
moments of time to sell or buy stock in finance application
[14]. The OS extended the problem to detect a moment of
time when the probabilistic structure of the observation
changes but still not suitable for the multiple change case [13].

The third category works address the Multi-Family
Likelihood Ratio Test (MFLRT). In [15], based on the multi-
ple signal model, the MFLRT is proposed to solve the
multiple change problem, but it only considers the addi-
tive change and the white Gaussian noise.

In practical applications, the multiple non-additive change
in the correlated Gaussian noise is often inevitable. For
example, the true seismic waves are with time-varying
spectrum and contain many other nuisance signals from the
environment [16]; the transient meteor trail interferences in
OTHRs often show spread spectrum in the heterogeneous
clutter [17]; the recognition-oriented signals are often with
segment spectrum structure in correlated Gaussian noise [18].

In this paper, we investigate the double nonadditive
change problem in the correlated Gaussian noise. First,
we parameterize the observations sequence to a double
change AR process. In fact, almost all Wide-Sense Stationary
(WSS) Gaussian processes can be expressed as the response
of an AR process steered by a white Gaussian noise [19] and
the nonadditive change can be simplified to the parameters
change of the AR model [9]. Based on the AR process, we
design a Generalized Likelihood Ratio Test (GLRT) without
any secondary data. More specifically, the GLRT is derived by
comparing the Logarithm Maximum Likelihood Functions
(Log-MLFs) under the changed and non-changed AR pro-
cesses. Meanwhile, the estimations of the unknown para-
meters of the signal and noise are obtained through a
Dynamic Programming (DP) method, which minimizes the
signal projection on the noise-subspace with respect to the
parameters recursively and avoids searching all possible
solutions in the parameter-space. Thus, all parameter's
estimations are obtained together with the decision result
without any off-line estimator.

The rest of the paper is organized as follows. In Section 2,
we formulate the problem in a binary hypothesis. In
Section 3, the proposed DP-GLRT is developed. Then, we
evaluate the performances of the proposed DP-GLRT as
well as the LLH-CUSUM, LCH-GLRT, Ext-LLH-CUSUM and
Ext-LCH-GLRT algorithms by computer simulations and
real data in Section 4 and 5. Finally, conclusions and
further work are provided in Section 6.

2. Problem formulation

Letting x be the K-dimensional complex received vector,
the detection problem with unknown occurring interval
signal can be formulated in terms of the following binary
hypothesis:

H0: x¼ n
H1: x¼αqþn;

(
ð1Þ

where

� α denotes the unknown complex amplitude;

� q consists of three sub-vectors as in [15], given by

q¼ 0T
L1 qT

L2 0T
L3

h iT
; ð2Þ

where the superscript ½:�T denotes the vector transpose
operator; qL2 is a deterministic steering vector of
interest, which occurs within the unknown interval
½k1þ1; k2�;1rk1rk2rK with unknown length
L2 ¼ k2�k1; 0L1 and 0L3 are respectively the zero vectors
within the intervals ½1; k1� and ½k2þ1;K� with length
L1 ¼ k1 and L3 ¼ K�K2, while L1þL2þL3 ¼ K .

� n is the K-dimensional zero-mean circular complex
Gaussian random vector with covariance matrix C,
which can be modeled as an AR parametric process
[19], i.e.,

nðkÞ ¼ ∑
P

i ¼ 1
aðiÞnðk� iÞþwðkÞ; ð3Þ

where a¼ að1Þ; að2Þ;…; aðPÞ½ �T is the P-dimensional
unknown complex AR coefficient vector, while P, for
P{K , denotes the order of the AR process which is
assumed to be known, w is the K-dimensional zero-
mean circular Gaussian random vector with covariance
σ2I (I is the K-dimensional identity matrix), i.e.,

w�Nð0;σ2IÞ: ð4Þ

3. The DP-GLRT algorithm

According to the Neyman–Pearson (NP) criteria, the
optimum detector is the Logarithm Likelihood Ratio Test
(Log-LRT) [20]:

Λ¼ log
pðx; k1; k2; a;σ;αjH1Þ

pðx; a;σjH0Þ
≷
H1

H0

η; ð5Þ

where pðx; k1; k2; a;σ;αjH1Þ and pðx; a;σjH0Þ denote
respectively the likelihood functions under H1 and H0, η
denotes the detection threshold setting to be a function of
the noise level in order to maintain a constant false alarm
probability (PFA) [20]. For P{K , they can be expressed as
[2,21]

pðx; k1; k2; a;σ;α H1Þ �
��

1

πσ2
� �K�P ∏

2

i ¼ 0
exp �

xkiþ 1
ki þPþ1�Xkiþ 1

ki ;P
a

� �
�α qkiþ 1

ki þPþ1�Q kiþ 1
ki ;P

a
� �h i��� ���2

σ2

8><
>:

9>=
>;;

ð6Þ
under H1 with k0 ¼ 0; k3 ¼ K; Pþ1rk1rK�2P�2;
2Pþ2rk2rK�P�1 and

p x; a;σjH0ð Þ � 1

πσ2
� �K�P exp �

xK
Pþ1�XK

0;Pa
� ���� ���2

σ2

8><
>:

9>=
>;; ð7Þ

under H0 respectively, where

xj
i ¼ ½xðiÞ; xðiþ1Þ;…; xðjÞ�T ;

qj
i ¼ ½qðiÞ;qðiþ1Þ;…;qðjÞ�T ; ð8Þ

for ir j and

Xj
i;P ¼ ½xj�1

iþP ; x
j�2
iþP�1;…; xj�P

iþ1�;
Q j

i;P ¼ ½qj�1
iþP ;q

j�2
iþP�1;…;qj�P

iþ1�; ð9Þ
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