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a b s t r a c t

In this paper, we provide a stability analysis for linear systems which have simultaneous saturations
in the states and their rates (dynamics). The stability analysis is conducted via a formulation based on
the polytopic representations of two saturation functions, state and rate saturation functions. Sufficient
conditions to guarantee local and global asymptotical stability of such systems are derived. Furthermore,
using the invariance analysis, we estimate the domain of attraction of the system when it is locally
asymptotically stable. The stability conditions are formulated as an iterative LMI (ILMI) algorithm. Finally,
numerical examples are presented to validate the proposed method.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The dynamical system with saturation nonlinearities has
received a great amount of research interest due to its frequently
occurrence in various engineering and scientific problems. For
examples, control systems with saturating actuators and sensors
(Berstein & Michel, 1995; Cao, Lin, & Chen, 2003; Hu & Lin,
2001), digital filters with saturation overflow arithmetic (Liu &
Michel, 1992), and neural networks defined on hypercubes (Jin,
Nikiforuk, & Gupta, 1994; Michel, Si, & Yen, 1991) can be modeled
with saturation nonlinearities. Specifically, the actuator saturation
problems have been popularly and steadily studied by many
researchers during the last two decades (Alamo, Cepeda, & Limon,
2005; Bateman & Lin, 2003; Berstein & Michel, 1995; Cao, Lam, &
Sun, 1998; Hindi & Boyd, 1998; Hu & Lin, 2001; Pittet, Tarbouriech,
& Burgat, 1997; Tarbouriech, Prieur, & Gemes da Silva, 2006; Zhou,
Zheng, & Duan, 2011). It is well known that actuator saturation
affects not only a system performance, but also stability of the
system; and hence, it has been one of the important issues in
control engineering to handle actuator saturations. Mainly, there
have been two key approaches to deal with actuator saturation
problems. The first approach can be called sector-based analysis.
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Based on the sector-boundedness of saturation nonlinearity, the
stability conditions and domain of attraction have been studied
(Hindi & Boyd, 1998; Pittet et al., 1997; Tarbouriech et al., 2006).
The other one is called linear differential inclusion (LDI) approach.
It was developed on the basis of the polytopic representation
of saturation nonlinearity by exploring a special property of the
saturation function (Hu & Lin, 2001), and was extended to nested
saturation problems (Bateman & Lin, 2003; Mesquine, Taeo, &
Benzaouia, 2004; Zhou et al., 2011).

In the territory of saturation nonlinearities, in certain physical
systems, the phenomenon of the limitation in states frequently
appears. The limitation in states takes place in order to protect the
system within a stable area or to restrict the system’s operation
range to physical constraints of the devices. Therefore, such
physical systems can be modeled with state saturation defined
on a closed hypercube Dn. From a literature search, it is seen
that the state saturation problems have been studied extensively
(Fang & Lin, 2004; Hou & Michel, 1998; Ji, Sun, & Liu, 2008; Liu
& Michel, 1994; Mantri, Saberi, & Venkatasubramanian, 1998). In
more detail, for the second-order systems with state saturation,
necessary and sufficient conditions for global asymptotic stability
were established in Hou and Michel (1998) and Mantri et al.
(1998). Similar to actuator saturation problem, the polytopic
representation of state saturation was investigated in Fang and
Lin (2004) and Ji et al. (2008), where a less conservative condition
for higher-order systems with state saturation was developed.
Similarly to the state saturation, rate (dynamics) saturation
problems have been also studied (Albertini & D’Alessandro, 1996;
Hu & Lin, 2000). For the rate (dynamics) saturation, a sufficient
condition for global asymptotic stability was derived in Albertini
and D’Alessandro (1996). As a special case, necessary and sufficient

0005-1098/$ – see front matter© 2012 Elsevier Ltd. All rights reserved.
doi:10.1016/j.automatica.2012.11.015

http://dx.doi.org/10.1016/j.automatica.2012.11.015
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
mailto:hoonnim@gist.ac.kr
mailto:hyosung@gist.ac.kr
http://dx.doi.org/10.1016/j.automatica.2012.11.015


Y.-H. Lim, H.-S. Ahn / Automatica 49 (2013) 496–502 497

condition of the second-order systems for a globally asymptotically
stability was investigated in Hu and Lin (2000).

In this paper, we are interested in linear systems that have
simultaneous saturations in the states and their rates (dynamics).
Such systems can be considered as a generalization of nested
saturated systems, since the saturation function includes another
additional saturation behavior. However, because the systemwith
simultaneous saturations in the states and their rates (dynamics)
can be defined only within the closed hypercube Dn, it should be
distinguished from the nested saturated systems. We may find
the examples of such systems in real applications. For instance,
in describing the dynamics of a car, speed and steer angle can be
chosen as the state variables. Since both the variables have upper
and lower limits, the system has state saturations (Liu & Michel,
1992). Furthermore, acceleration and angular velocity are limited,
too. Thus, the dynamics of a car can bemodeledwith state and rate
saturations. Note that the systems with simultaneous saturations
in the states and their rates may be used to represent physical
systems including dynamic actuators. Consider the power systems
controlled by the speed governor. Realistic governor models may
include limits on the valve position and its displacement (Siljak,
Stipanovic, & Zecevic, 2002). Therefore, the power systemsmay be
modeled with partial state and rate saturations also.

This paper takes the similar approach to those in Zhou et al.
(2011), but extends the results to two different saturation nonlin-
earities. The basic idea of the paper is to integrate two polytopic
differential inclusions. That is, by convexity of each vertex in one
inclusion, we can test all the vertices of the other ones. Conse-
quently, the contribution of this paper can be compactly summa-
rized as follows. First, based on the polytopic representations of
two different saturation functions, we derive sufficient conditions
to guarantee local and global stability. Second, the condition for the
invariance of the intersection of two sets E(P) and Dn is derived
(see Section 2 for the notations), and thus, we estimate the domain
of attraction from the intersection of two sets. Third, we provide
an algorithm for stability test and for the estimation of the domain
of attraction via iterative linear matrix inequalities (ILMIs).

The paper is structured as follows. First, we define the state and
rate saturated systems, and provide polytopic representations of
state and rate saturation functions in Section 2. Then, we derive
local and global asymptotical stability conditions in Section 3. In
order to evaluate the asymptotical stability and to estimate the
domain of attraction, we provide an ILMI algorithm in Section 4.
In Section 5, numerical example is presented, and then conclusion
and future works are discussed in Section 6, consequently.

2. Problem statement and preliminaries

In this paper, we use the following notations. The i-th
component of a vector x is denoted by x(i). For a matrix A ∈

Rm×n, AT denotes the transpose of A. The elements of the matrix A
are denoted by A(i,j), i = 1, 2, . . . ,m, j = 1, 2, . . . , n, and A(i,:) and
A(:,i) denote the i-th row and i-th column of matrix A, respectively.
For a symmetric positive-definite matrix P ∈ Rn×n, we define an
ellipsoid as E(P) = {x ∈ Rn

: xTPx ≤ 1}. Let H ∈ Rn×n, we
then define L(H) = {x ∈ Rn

: |H(i,:)x| ≤ 1, i = 1, 2, . . . , n}
which implies the linear region of the saturation function sat(Hx).
The symbol co{·} denotes the convex hull. We denote a hypercube
by Dn

= {x ∈ Rn
: −1 ≤ x(i) ≤ 1, i = 1, 2, . . . , n}, and its

boundary by ∂Dn
=
n

i=1 ∂Di, where ∂Di = {x ∈ Rn
: |x(i)| =

1, −1 ≤ x(j) ≤ 1, j = 1, 2, . . . , i − 1, i + 1, . . . , n}. For ∂Di,
denote ∂D+

i = {x ∈ Rn
: x(i) = 1, −1 ≤ x(j) ≤ 1, j = 1,

2, . . . , i − 1, i + 1, . . . , n}, ∂D−

i = {x ∈ Rn
: x(i) = −1, −1 ≤

x(j) ≤ 1, j = 1, 2, . . . , i − 1, i + 1, . . . , n}, and their vertices as
vert(∂D+

i ) and vert(∂D−

i ), respectively.

Similarly to Zhou et al. (2011), we use some special notations.
For two integers p ≥ 1 and n ≥ 1, we define the symbol Vn

p as
a set such as Vn

p = {v = [v(1), v(2), . . . , v(n)]
T

∈ Rn
: v(i) ∈

{1, 2, . . . , p}, i = 1, 2, . . . , n}, which contains pn elements. For
example, if p = 3, n = 2, then
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
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
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
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
,


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
,


2
3


,


3
1


,


3
2


,


3
3


.

Furthermore, let Dn be the set of n × n diagonal matrices whose
diagonal elements are either 1 or 0. We define Dv

l ∈ Dn, l =

1, 2, . . . , p, such that if v(i) = l, then the i-th diagonal elements
of matrix Dv

l are 1 and the others are zeros. For example, for given
V2

3 , if v = [3, 2]T ∈ V2
3 , then

Dv
1 =


0 0
0 0


, Dv

2 =


0 0
0 1


, Dv

3 =


1 0
0 0


.

In this paper,we consider the following linear systems that have
simultaneous saturations in the states and their rates (dynamics):

ẋ = sat (h(Ax)) , (1)

where x ∈ Dn, A ∈ Rn×n is a real matrix, and two saturation
functions, h(•) and sat(•), represent state and rate saturations
defined as follows:

h(Ax) =



h


n

j=1

A(1,j)x(j)



h


n

j=1

A(2,j)x(j)


...

h


n

j=1

A(n,j)x(j)




, (2)

with, for each i = 1, 2, . . . , n, the following symmetric constraints

h


n

j=1

A(i,j)x(j)



=


0, if |x(i)| = 1 and


n

j=1

A(i,j)x(j)


x(i) > 0

n
j=1

A(i,j)x(j), otherwise
(3)

and

sat(φ(i)) = sign(φ(i))min(1, |φ(i)|), (4)

respectively.
It is well known that for rate (dynamics) saturated systems

(i.e., ẋ = sat(Ax)) and state saturated systems (i.e., ẋ = h(Ax)),
Hurwitz on A does not imply a global stability within Dn (Albertini
& D’Alessandro, 1996; Hu & Lin, 2000; Mantri et al., 1998). The
objective of this paper is, thus, to study local and global stability
of the system (1) as well as to estimate the domain of attraction
of the origin. In what follows, we first provide some definitions
and lemmas that are useful for our main results. For the saturated
systems, invariance method (Blanchini, 1999) is widely used for
stability analysis, synthesis, and for the estimation of the domain
of attraction.

Consider the following time-invariant systems

ẋ = f (x), (5)



Download English Version:

https://daneshyari.com/en/article/695973

Download Persian Version:

https://daneshyari.com/article/695973

Daneshyari.com

https://daneshyari.com/en/article/695973
https://daneshyari.com/article/695973
https://daneshyari.com

