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a b s t r a c t

This paper studies undamped oscillations of fractional-order Duffing system. Stability
theorems for fractional order systems are used to determine the characteristic polynomial
of the system in order to find the parametric ranges for undamped oscillations in this
system. We also derive relations for estimating the frequency and the amplitude of the
oscillations in this system using a describing function method. Finally numerical simula-
tion results are provided to justify the analysis.
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1. Introduction

Definition of derivative with respect to an integer order
can be extended to real order derivatives (as well as complex
orders) in a well-defined manner. Consequently fractional
order concepts, e.g. fractional order differential equations,
can be defined along with integer order concepts. Fractional
order calculus has been the subject of pure mathematics
research for long time but only in the past three decades its
applications in modeling the real world phenomenon as well
as engineering emerged [1]. Integer order differentiation is a
local operator, that is, its value at a given point depends only
on values of function near that point. In contrast, fractional
differentiation is not a local operator in general and thus
potentially can outperform integer order differentiation
when we deal with properties like memory. It has been
shown that elements with memory in the nature, e.g.
capacitors, can be modeled better using fractional order
differential equations [2]. Fractional order calculus has been
applied to different applications in signal processing to
improve classical signal processing algorithms which use

integer order calculus, including edge detection [3], image
segmentation [4], wavelet theory [5], filter design [6], and
image denoising [7].

Studying dynamical behavior of fractional systems has
attracted considerable attention in recent years. For instance,
dynamics of population densities are generally described
using exponential laws, whereas there are systems that
dynamics obeys faster or slower-than-exponential laws. In
such cases the dynamics may be described better by fractional
order systems [8]. Viscoelasticity is another area of applica-
tions of fractional dynamics where the material exhibits its
nature between purely elastic and pure fluid [9]. Anomalous
diffusion is another example where fractional-order diffusion
equation can describe the anomalous flow in the diffusion
process [10]. Many fractional order systems are inspired from
extension of integer order systems [11–17]. In such cases, we
are interested to study the effect of the fractional derivative on
behavior of the system and verify the differences. Study of
different cases indicates fractional version of an integer order
system may have different behavior compared to the original
integer order system. For instance it has been shown that a
fractional order Brusselator oscillator with an order less than
two can have oscillatory behavior [11], whereas in ordinary
integer systems the minimum order must be two. It has been
shown that in the fractional Van der Pol system, trajectory of
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the oscillations depends on the initial value of the system
[12,13]. It has been shown that a fractional-order Wien-bridge
oscillator can generate a limit cycle for any fractional order
[14] subject to proper selection of the amplifier gain. It has
been shown that the fractional-order Chua system with order
as low as 2.7 produces chaotic oscillations [15]. There is an
ongoing research to study and analyze this class of fractional
systems.

In the current work, the fractional order Duffing system is
studied [18]. Oscillatory and chaotic behavior of this system
has been studied extensively in the literature [19–22].
The model is simple but can have regular and chaotic
oscillations and is a common second order systems, studied
in the literature. The Duffing system has been extended to a
fractional system in the literature [23–29]. Several scenarios
can be used to fractionalize the Duffing system. In [23,24],
authors modify the Duffing system by coupling two normal
Duffing systems and fractionalize the modified Duffing
system in a state space. Using numerical simulations, Ref.
[23] shows that a fractional modified Duffing system indi-
cates chaotic behavior. In [24], authors extend [23] by
considering a periodically forced case and use numerical
simulations to detect chaotic behavior without further
mathematical analysis. Another group of authors fractiona-
lize the Duffing system by considering a fractional damping
term [25–29]. It has been shown that this extension could
indicate chaotic and regular oscillations [25–27]. In [28,29],
authors study resonance in this system. In the current work,
we extend the generalization of [25–29] by further fractio-
nalizing the Duffing system in state space domain. We
focus on analyzing the regular oscillatory behavior of this
system using mathematical tools. Based on stability theo-
rems derived for fractional order systems, a parametric
region for undamped oscillations is derived analytically. We
also derive relations for estimating the frequency and the
amplitude of the oscillations in this system using a describ-
ing function method. This approach has been used in the
literature to study the fractional order Van der Pol oscillator
[12,13], and the fractional order Arneodo oscillator [16]. The
analysis is further investigated via numerical simulations.

The paper is organized as follows. In Section 2 some
preliminary mathematical concepts are reviewed. In
Sections 3 the fractional order Duffing system is intro-
duced and the parametric region for undamped oscillation
is derived. Section 4 is devoted to estimating the frequency
and the amplitude of the oscillations using the describing
function method. Numerical simulation results are pre-
sented in Section 5. The paper is finally concluded in
Section 6.

2. Basic preliminaries

Fractional derivative is defined as the extension of
integer order derivative. The extension must be a well-
defined linear operator. Several definitions are proposed
for fractional derivative. Common definitions include
Riemann–Liouville, Grunwald–Letnikov, and Caputo defi-
nitions [1].

Let f ð�Þ be a real valued integrable function. The athA
Rþ Riemann–Liouville fractional derivative of the function

f ð�Þ with respect to t is defined as

RLD
a
t f tð Þ ¼ dn

dtn
Jn�af tð Þ; ð1Þ

where nAN is the integer for which n�1raon and J is
the fractional integral of the function f ð�Þ defined by

Jaf tð Þ ¼ 1
ΓðaÞ

Z t

0
ðt�xÞa�1f xð Þ dx; ð2Þ

where ΓðaÞ ¼ R1
0 e� t ta�1 dt is the Gamma function.

The ath Grunwald–Letnikov fractional derivative of the
function f ð�Þ with respect to t and the terminal value 0 is
defined by
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where a
j

� �
¼ Γ aþ1ð Þ=j!Γ aþ1� jð Þ.

The Caputo definition of the fractional derivative is
defined as

CD
a
t f tð Þ ¼

Jn�a dn

dtn
f tð Þ; n�1oaon

dn

dtn
f tð Þ; a¼ n

8<
: ; ð4Þ

where aARþ and n is defined as in (1). For a wide class
of functions, these are equivalent [1]. Unfortunately, the
Riemann–Liouville fractional derivative is not suitable to
be used in the Laplace transform domain since it requires
the knowledge of the non-integer order derivatives of
the function at t¼0. This ambiguity does not exist for
the Caputo definition and the Laplace transform of the
Caputo fractional derivative is defined by

LfCDa
t f ðtÞg ¼ saLff ðtÞg� ∑

n�1

k ¼ 0
sa�1�kf kð0Þ; ð5Þ

where Lf�g denotes the Laplace operator. For aAN this
relation reduces to the Laplace transform of the ordinary
integer order derivatives. This property makes the defini-
tion more suitable. For instance, some important concepts
of the classical control theory can be extended to fractional
control theory via using the Caputo fractional derivative.
For this reason this definition is used in this paper.

After definition of fractional derivative, one can define
fractional order differential equations in the state space
similar to integer order equations. Consider the following
fractional order system:

dai xi
dtai

¼ f i x1;…; xNð Þ; i¼ 1;2;…;N; ð6Þ

where ai ¼ ni=miAQþ and f ið�Þ's are continuous first order
differentiable functions (note although we consider
rational fractional derivatives, the final results of the paper
will be extended for Rþ ). The equilibrium points of (6),
xnARN , are roots of the following (nonlinear) equations:

f iðx1;…; xNÞ ¼ 0; i¼ 1;2;…;N; ð7Þ

To study oscillatory behavior of this fractional order system
we need to study the stability of the equilibrium points.
In the case of integer order systems this can be verified
by forming the system Jacobian at equilibrium points and
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