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a b s t r a c t

This paper analyzes the mathematical modeling of a two-region composite reservoir using
the concepts of fractal geometry and fractional calculus. Heterogeneity of the reservoir is
considered based on fractal geometry. Fractional calculus is used to consider production
history in fractal reservoirs. An analytical solution is derived for the pressure-transient
behavior of a well in a radial composite system when wellbore storage and skin effects are
significant. Some new type-curves are developed under three outer boundary conditions:
infinite, closed and constant-pressure. These new type curves can be used to analyze well-
tests from a variety of enhanced oil recovery projects, geothermal reservoirs and acidization
projects, more accurately.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The majority of the conventional pressure-transient
models assume that permeability and porosity of a forma-
tion are invariant in space. These models can be used in an
appropriate approach only if the variations of permeability
and porosity are small compared with the wellbore perme-
ability and wellbore porosity. However, core, well logging,
outcrop data, production behavior, and the dynamic beha-
vior of these reservoirs indicate that many types of reser-
voirs cannot be justified by these assumptions. Fractal
geometry is a suitable tool to describe the response of a
fractal reservoir; especially it is appropriate to scale the
extreme non-uniformity and consequence of porous media.
Starting with the seminal work of O’Shaughnessy and
Procaccia [19] and Chang and Yortsos [20], fractal theory
has been successfully applied to pressure-transient testing.

However, in some sense, the fractal geometry fails to
consider the non-locality of the media and so cannot
explain the complex dynamics processes on such kind of
media [1–7].

On the other hand, fractional calculus, and so called
fractional operators, is known since the early 17th century.
The more interesting property of such operators, which
extend the classical integral and derivative operators,
for their applications is that they are non-local involving
a power type memory [7–9]. Fractional operators have
been extensively applied in many applied fields which
have seen an overwhelming growth in the last three
decades. A few examples are in physics, engineering, bio-
engineering, or communication systems [8–18]. Actually,
in many cases, it is clear that the fractional models are
more suitable for engineering systems than the counter-
part based on ordinary derivative approach. In reservoir
engineering, Metzler et al. [21] use the concept of frac-
tional derivative to capture the history and non-locality of
flow as memory in fractal-fractional diffusion (FFD) model
[22–24].
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This paper presents methods for analysis of pressure-
transient behavior of radial composite systems based on
fractal geometry and fractional derivative concepts. Some
new type curves are generated with this technique to
analyze well test data from radial composite reservoirs and
to determine the well and reservoir parameters more
accurately.

The organization of this paper is as follows: Section 2
describes the basic concepts of fractional calculus. The
model description is provided in Section 3. In Section 4,
the wellbore pressure is computed in Laplace space.
Section 5 describes the new type curves generated by
the analytical solutions. Finally, the conclusions are given
in Section 6.

2. Fractional calculus

In this section some preliminaries, that support the
following sections, are presented, (, Refs. [8,15,25,26]). As a
generalization of the Cauchy n-tuple integral formula,
fractional order integral operator of a continuous function
f ðtÞ can be defined as follows:

Iqaþ xðtÞ ¼ 1
ΓðqÞ

Z t

a
ðt�sÞq�1f ðsÞds; ðqARþ ; aARÞ ð1Þ

in which ΓðqÞ ¼ R1
0 e� zzq�1dz; q40 is the Gamma

function.
The corresponding left fractional derivative of a con-

tinuous function f ðtÞ in the sense of Riemann–Liouville
(RL) is defined as follows:

RLDq
aþ f ðtÞ ¼DmIm�q

aþ f ðtÞ

¼ 1
Γðm�qÞ

dm

dtm

Z t

a
ðt�sÞm�q�1f ðsÞds; ðqARþ ; aARÞ ð2Þ

where ⌈q⌉¼mAZþ .
The left fractional order derivative operator in the sense

of Caputo is defined as follows:

CDq
0þ f ðtÞ: ¼ Im�q

0þ Dmf ðtÞ ¼ 1
Γðm�qÞ

Z t

a
ðt�sÞm�q�1f ðmÞðsÞds;

ð3Þ
where qARþ and ⌈q⌉¼mAZþ .

As a comparison that shows the preference of Caputo
definition in engineering applications, the Laplace trans-
forms of these two definitions are stated as follows:

1. LfCDq
0þ f ðtÞg ¼ sqFðsÞ�∑m�1

k ¼ 0s
q�k�1f ðkÞð0Þ

2. LfRLDq
0þ f ðtÞg ¼ sqFðsÞ�∑m�1

k ¼ 0s
kRLDq�k�1

0þ f ð0Þ;

in which m�1oqomAZþ and FðsÞ is the Laplace
transform of f ðtÞ. From the first property it can be seen
that for evaluating the Laplace transform of a Caputo
differentiated function, the integer order derivatives of
the function at the initial time are needed whereas for the
Riemann–Liouville ones, the fractional order derivatives of
the function are needed for computing the Laplace trans-
form. Thus, for the problem considered in this work the
Caputo definition looks like the suitable fractional deriva-
tive to be used, although other suitable alternative could

be used like the fractional derivative called Grünwald–
Letnikov.

3. Model description

The FFD model for a fractally radial composite system
involving the fractional Caputo derivative could be written,
in accordance with [21,27,28], as the following two frac-
tional differential equations (dual fractional differential
equation):

1
rθD

∂2pD1
∂r2D

þ β

rθþ1
D

∂pD1
∂rD

¼ ∂γpD1
∂tγD

; for 1rrDrRD; ð4Þ

and

1
rθD

∂2pD2
∂r2D

þ β

rθþ1
D

∂pD2
∂rD

¼ ∂γpD2
∂tγD

; for RDrrDrreDo1 ð5Þ

where β¼ dmf �θ�1, γ ¼ 2=ð2þθÞ and ∂γpD=∂t
γ
D are given

by Eq. (3). Here dmf and θ are the mass fractal dimension
and conductivity index, respectively. Since 0rθ, so
0oγr1. Initial conditions are pD1ðrD;0Þ ¼ 0, and
pD2ðrD;0Þ ¼ 0.

Inner boundary condition without wellbore storage and
skin effects is ðrβDð∂pD1=∂rDÞÞrD ¼ 1 ¼ �1.

Conditions at the discontinuity are

∂pD2
∂rD

¼M
∂pD1
∂rD

; for rD ¼ RD; tD40 and pD2 ¼ pD1;

for rD ¼ RD; tD40:

Outer boundary conditions are as follows:Infinite:
lim

rD-1
pDðrD; tDÞ ¼ 0:Closed: ð∂pD=∂rDÞrD ¼ reD ¼ 0:Constant

pressure: pDðreD; tDÞ ¼ 0;where the dimensionless vari-
ables are as defined below.Dimensionless pressure:

pD1 ¼
k1h

141:2qBμ1
ðpi�p1ðr; tÞÞ;

pD2 ¼
k2h

141:2qBμ2
ðpi�p2ðr; tÞÞ;

pwD ¼ k1h
141:2qBμ1

ðpi�pwðtÞÞ

where k, h, q, B, and μ represent the reservoir rock
permeability, net formation thickness, flow rate, liquid
formation volume factor and liquid viscosity, respec-
tively. And pi , p and pw denote the initial reservoir
pressure, reservoir pressure and wellbore pressure,
respectively.Mobility ratio is M¼ ððk=μÞ1=ðk=μÞ2Þ,
Hydraulic diffusivity ratio is D¼ ðk=ϕμctÞ1=ðk=ϕμctÞ2,
where ϕ denotes the reservoir rock porosity.Dimen-
sionless time is tD ¼ 0:0002637 k1t=ðϕμctÞ1r2w, where t is
the elapsed time and ct and rw represent the total
compressibility and wellbore radius, respectively.
Dimensionless radii are rD ¼ ðr=rwÞ, RD ¼ ðR=rwÞ, and
reD ¼ ðre=rwÞ, where r, R, and re denote the radial
distance, radius of discontinuity, and external radius,
respectively.

Dimensionless wellbore storage coefficient: CD ¼
5:6146 C=2πðϕctÞ1hr2w, where C is the wellbore storage
coefficient.
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