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a b s t r a c t

This paper aims at designing a fractional order differentiator for a class of signals satisfying a
linear differential equation with unknown parameters. A generalized modulating functions
method is proposed first to estimate the unknown parameters, then to derive accurate integral
formulae for the left-sided Riemann–Liouville fractional derivatives of the studied signal. Unlike
the improper integral in the definition of the left-sided Riemann–Liouville fractional derivative,
the integrals in the proposed formulae can be proper and be considered as a low-pass filter
by choosing appropriate modulating functions. Hence, digital fractional order differentiators
applicable for on-line applications are deduced using a numerical integration method in
discrete noisy case. Moreover, some error analysis are given for noise error contributions due to
a class of stochastic processes. Finally, numerical examples are given to show the accuracy and
robustness of the proposed fractional order differentiators.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Fractional calculus was introduced in many fields of
science and engineering long time ago. It was first developed
by mathematicians in the middle of the ninetieth century [1].
During the past decades, fractional calculus has gained great
interest in several applications [2–4]. For instance, fractional
derivatives can improve the performances and robustness
properties in control design (see, e.g. [5–8]) and in signal
processing applications (see, e.g. [9–12]). The fractional order
numerical differentiation is concerned with the estimation of
the fractional order derivatives of an unknown signal from its
discrete noisy observed data. As in the integer order case, this
problem is an ill-posed problem in the sense that a small
noise can lead to a large error in approximated derivatives.
In order to overcome this problem, various robust fractional
order differentiators have been proposed in the frequency
domain (see, e.g. [13,14]) and in the time domain, such as

digital fractional order Savitzky–Golay differentiator [15],
fractional order Jacobi differentiator [16], and B-Spline func-
tions-based fractional order differentiator [17]. The main idea
of the latter fractional order differentiators designed in the
time domain is to use a polynomial to approximate the
unknown signal whose fractional order derivatives are esti-
mated by differentiating the polynomial. If we consider the
used polynomial as the truncated Taylor series expansion of
the unknown signal, then these fractional order differentiators
contain an estimation error due to the truncated term in the
Taylor series expansion. When estimating the fractional order
derivatives of an unknown signal, even in noise free case,
these kinds of truncation errors can produce large errors near
the boundaries of the interval where the fractional order
derivatives are estimated [16,17].

Existing fractional order differentiators are usually
extensions of integer order differentiators [18–20]. When
estimating the derivatives of an unknown signal, if the
differentiators do not depend on any model which gives
the unknown signal, then we call them model-free differ-
entiators. In order to avoid truncation errors, integer order
model-based differentiators have been proposed using
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a recent algebraic parametric method to estimate the state
variables of an input–output linear system [21–23]. The
successive integer order derivatives of the output were
accurately estimated from its noisy observation without
any truncation error. The idea of this algebraic parametric
method is to apply the Laplace transform to the linear
differential equation which defines the studied linear
system. By applying some algebraic operations (such as
differentiations and multiplications) in the Laplace opera-
tional domain, undesired terms in the obtained equation
are eliminated. When returning into the time domain, the
integer order derivatives of the output are exactly given by
integral formulae involving the output and a combination
of the weight functions of Jacobi orthogonal polynomials.
Then, integer order differentiators are deduced by taking the
noisy observation of the output in the obtained integral
formulae. It has been shown in [24,25] that thanks to the
integral formulae these differentiators exhibit good robust-
ness properties with respect to corrupting noises even if the
statistical properties of the noises are unknown. Recall that
the algebraic parametric method was introduced by Fliess
and Sira-Ramírez for linear identification [26], and has been
extended to many applications in noisy environment, such
as design of integer order model-free differentiators (see,
e.g. [27–31]) and parameter estimation (see, e.g. [32–37]).
Very recently, it has been applied for fractional order model-
free differentiators [38] and for fractional order systems
identification [39]. However, the algebraic parametric method
has not been applied for fractional order model-based
differentiators.

Modulating functions method introduced by Shinbrot [40]
is very similar to the algebraic parametric method. This
method has been widely used for linear and non-linear
identification of continuous-time systems (see, e.g. [41–43]),
and parameter estimation of noisy sinusoidal signals (see, e.g.
[44,36]). The idea of this method is to multiply a class of
modulating functions to a linear differential equation of the
analyzed signal. Then, an integration over a finite interval is
taken to the obtained equation. Application of integration by
parts allows us to remove the derivative operations from the
analyzed signal to the multiplied modulating functions, and
the undesired boundary values are eliminated thanks to the
properties of modulating functions. Finally, estimators are
obtained by solving a linear system of algebraic equations
and given by integral formulae involving the noisy observa-
tion of the analyzed signal. Since the weight functions of
Jacobi orthogonal polynomials obtained in integral formulae
by the algebraic parametric method are also a class of
modulating functions, the modulating functions method can
be considered as a generalization of the algebraic parametric
method in some cases (see, e.g. [36]). It has similar advantages
to the algebraic parametric method, especially the robustness
properties with respect to corrupting noises. Moreover,
inspired by the algebraic parametric method, the modulating
functions method can be extended to many applications.
In [45], a fractional integration by parts formula has been
obtained by working in the operational domain, then the
modulating functions method has been generalized to frac-
tional order systems identification problem. Inspired by
[21–23], generalized modulating functions have been given
[46], whose existence can be guaranteed by the algebraic

parametric method. Then, the modulating functions method
has been generalized to design an integer order model-based
differentiator [46], where the proposed differentiator does not
contain any truncation error. Unlike the integer order model-
based differentiators obtained with complex mathematical
deduction in [22,23], this differentiator is easy to obtain and to
understand. Having these ideas in mind, the aim of this paper
is to extend the modulating functions method to design
a robust fractional order model-based differentiator without
any truncation error. For this purpose, we will focus on a
specific class of signals satisfying a linear differential equation
with unknown parameters.

This paper is organized as follows. Section 2 begins with
some basic definitions of fractional order derivatives. Then, a
recent fractional integration by parts formula is recalled. In
Section 3, generalizedmodulating functions are first proposed.
Then, the unknown parameters of the considered linear
differential equation are estimated using a set of modulating
functions. The generalized modulating functions and the
fractional integration by parts formula are applied to obtain
fractional order differentiators in continuous noise free case,
which provide exact integral expressions for fractional order
derivatives. Digital fractional order differentiators are deduced
using the obtained integral expressions in discrete noisy case.
Moreover, some error analysis results for noise error con-
tribution are given. In Section 4, numerical results illustrate
the accuracy and robustness of the proposed fractional order
differentiators. Finally, some conclusions and perspectives are
given in Section 5. Some classes of generalized modulating
functions are presented in Appendix.

2. Preliminary

2.1. Riemann–Liouville and Caputo fractional derivatives

Let lAN, αAR\N with l�1oαo l, and f AClðRÞ where
ClðRÞ refers to the set of functions being l-times continu-
ously differentiable on R. Then, we recall the following
definitions.

Definition 1 (Podlubny [3, p. 68]). The left-sided Riemann–
Liouville fractional derivative of f is defined as follows:
8tA ½a; þ1½,

RD
α
a;t f tð Þ≔ 1

Γðl�αÞ
dl

dtl

Z t

a
ðt�τÞl�α�1f τð Þ dτ; ð1Þ

where Γð�Þ is the Gamma function (see [47, p. 255]).

Definition 2 (Podlubny [3, p. 79]). The left-sided Caputo
fractional derivative of f is defined as follows: 8tA ½a; þ1½,

CD
α
a;t f tð Þ≔ 1

Γðl�αÞ
Z t

a
ðt�τÞl�α�1f ðlÞ τð Þ dτ: ð2Þ

Definition 3 (Kilbas et al. [4, p. 92]). The right-sided
Caputo fractional derivative of f is defined as follows:
8tA ��1; b�,

CD
α
t;b f tð Þ≔ ð�1Þl

Γðl�αÞ
Z b

t
ðτ�tÞl�α�1f ðlÞ τð Þ dτ: ð3Þ

Please cite this article as: D.-Y. Liu, T.-M. Laleg-Kirati, Robust fractional order differentiators using generalized modulating
functions method, Signal Processing (2014), http://dx.doi.org/10.1016/j.sigpro.2014.05.016i

D.-Y. Liu, T.-M. Laleg-Kirati / Signal Processing ] (]]]]) ]]]–]]]2

http://dx.doi.org/10.1016/j.sigpro.2014.05.016
http://dx.doi.org/10.1016/j.sigpro.2014.05.016
http://dx.doi.org/10.1016/j.sigpro.2014.05.016


Download	English	Version:

https://daneshyari.com/en/article/6959756

Download	Persian	Version:

https://daneshyari.com/article/6959756

Daneshyari.com

https://daneshyari.com/en/article/6959756
https://daneshyari.com/article/6959756
https://daneshyari.com/

