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a b s t r a c t

Multimodulus algorithms (MMA) based adaptive blind equalizers mitigate inter-symbol
interference in a digital communication system by minimizing dispersion in the quad-
rature components of the equalized sequence in a decoupled manner, i.e., the in-phase
and quadrature components of the equalized sequence are used to minimize dispersion in
the respective components of the received signal. These unsupervised equalizers are
mostly incorporated in bandwidth-efficient digital receivers (wired, wireless or optical)
which rely on quadrature amplitude modulation based signaling. These equalizers are
equipped with nonlinear error-functions in their update expressions which makes it a
challenging task to evaluate analytically their steady-state performance. However,
exploiting variance relation theorem, researchers have recently been able to report
approximate expressions for steady-state excess mean square error (EMSE) of such
equalizers for noiseless but interfering environment.

In this work, in contrast to existing results, we present exact steady-state tracking
analysis of two multimodulus equalizers in a non-stationary environment. Specifically, we
evaluate expressions for steady-state EMSE of two equalizers, namely the MMA2-2 and
the βMMA. The accuracy of the derived analytical results is validated using different set
experiments and found in close agreement.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Transmission of signals between a transmitter and a
receiver in a communication system encounters different
types of dispersive channels. Such channels perform cer-
tain non-ideal transformations resulting in different types
of interferences like inter-symbol interference (ISI) and
frequency selective fading, which are considered to be the
biggest limiting factors in a communication system. One of
the approaches to combat ISI is to use blind equalizer. An

adaptive blind equalizer attempts to compensate for the
distortions of the channel by processing the received
signals and reconstructing the transmitted signal up to
some indeterminacies by the use of linear or nonlinear
filters. Specifically, a blind equalizer does not require any
training mode and tries to mitigate the effects of the
channel solely on the basis of probabilistic and statistical
properties of the transmitted data sequence. The basic idea
behind an adaptive blind equalizer is to minimize or
maximize some admissible blind objective or cost function
through the choice of filter coefficients based on the
equalizer output [1–3].

When an adaptive equalizer is used to combat a time-
varying channel, the optimum Wiener solution takes
time-varying form which results in variation of saddle
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point in error performance surface. If the underlying signal
statistics happen to change with time, then these statis-
tical variations will be reflected in the data, the filter has
access to, which in turn will be reflected in the perfor-
mance of filters. So, tracking variations in signal statistics
or signal moments is considered to be a useful property for
adaptive filters. For adaptive filters, the variation in under-
lying signal statistics and the saddle point can be tracked
by using tracking performance analysis; and consequently,
the filter parameters can be adjusted accordingly to
maintain the saddle points of error performance surface
and to calculate the variations in underlying signal statis-
tics in time-varying systems. One metric to evaluate
tracking performance of an adaptive filter is to measure
the steady-state excess mean square error (EMSE). EMSE
can be defined as the difference between the mean square
error (MSE) of the filter in steady-state and the minimum
cost. The smaller the EMSE of an adaptive filter, the better
it is [4]. If filter parameters (like step-size) are chosen
correctly, the filter can track variations in signal statistics
provided variations are not fast. However, tracking fast
variations in signal statistics might be a challenging task or
at times impossible to perform [4].

In the context of adaptive blind equalization, the widely
adopted algorithm is Constant Modulus Algorithm (CMA2-2)
[2,5–7]. For quadrature amplitude modulation (QAM)
signaling, however, a tailored version of CMA2-2, com-
monly known as Multimodulus Algorithm (MMA2-2), is
considered to be more suitable. The MMA2-2 is capable of
jointly achieving blind equalization and carrier phase
recovery [8–13], whereas the CMA2-2 requires a separate
phase-lock loop for carrier phase recovery.

The nonlinearity of most of the adaptive equalizers,
including both CMA2-2 and MMA2-2, makes the steady-
state analysis and tracking performance a difficult task to
perform. As a result, only a small number of analyses are
available in the literature concerning the steady-state
analysis performance of adaptive equalizers. However, a
few results are available on EMSE analysis of CMA2-2,
where some researchers employed Lyapunov stability and
averaging analysis [14], and some exploited the variance
relation theorem [15,16] to evaluate the same. The steady-
state analysis of adaptive filters has gained interest due to
ease in analysis owing to variance relation theorem. Abrar
et al. [17] performed the EMSE analysis of CMA2-2 and
βCMA [18] by assuming that the modulus of equalized
signals is Rician distributed in the steady-state. Moreover,
this theorem has been employed to study the steady-state
analysis of a number of adaptive blind equalization algo-
rithms like in the analyses of the so-called hybrid algo-
rithm [19], the square contour algorithm [20], the
improved square contour algorithm [21] and the varying-
modulus algorithms [22].

In this paper, we perform tracking performance analy-
sis of two well-known multimodulus equalizers. In parti-
cular, using the variance relation arguments, we derive
expressions for steady-state EMSE of MMA2-2 and
recently proposed βMMA [23] under the assumption that
the quadrature components of the successfully equalized
signal are Gaussian distributed when conditioned on true
signal alphabets. The paper is organized as follows: Section 2

introduces the mathematical model for the system. Section 3
introduces the non-stationary environment and the frame-
work for EMSE analyses. Section 3.1 provides the steady-
state tracking performance analysis for MMA2-2 equalizer.
Section 3.2 presents the analytical expression evaluated for
steady-state tracking performance analysis for βMMA equal-
izer. Section 4 provides simulation results for steady-state
performances of MMA2-2 and βMMA for equalized zero-
forcing scenario, equalization of fixed and time-varying
channels, and equalization under different values of filter-
length. Finally, Section 5 draws conclusions.

2. System model and multimodulus equalizers

A typical baseband communication system is given in
Fig. 1. Consider the transmission of discrete valued com-
plex sequence fang over an unknown communication
channel characterized by finite impulse response filter
with impulse response hn; the sequence fang is indepen-
dent and identically distributed (i.i.d.), and takes value of
square-QAM symbols with equal probability. The consid-
ered channel hn is a fading, dispersive, time-varying in
nature, where the channel at index n is given as
hn ¼ hconstþcn. The channel is a complex Gaussian random
process with a constant mean hconst (because of shadow-
ing, reflections and large scale path loss) and a time-
variant part cn, the channel taps vary from symbol to
symbol and are modeled as mutually uncorrelated circular
complex Gaussian random processes. The time-varying
part of the channel can be modeled by a pth-order
autoregressive process AR(p).

The received signal xn is the convolution of transmitted
sequence fang and filter impulse response hn represented
as xn ¼ hT

nan, where superscript T denotes the transpose
operator. The vector xn is fed to the equalizer to combat
the interference introduced by the physical channel and
estimate delayed version of the transmitted sequence
fan� δg, where δ denotes delay.

Let wn ¼ wn;0;wn;1;…;wn;N�1
� �T be the impulse

response of equalizer and xn ¼ xn; xn�1;…; xn�Nþ1
� �T be

the regression vector (vector of channel observations), N is
the number of equalizer taps. The output of equalizer is
convolution of regression vector and equalizer impulse
response given as yn ¼wH

n�1xn where superscript H
denotes the Hermitian conjugate operator. Let tn ¼ hn �
wn

n�1 be the overall channel-equalizer impulse response
(� denotes convolution operation and the superscript n

denotes complex conjugate operator). If the channel
response is given by a K-tap vector hn ¼ ½hn;0;hn;1;…;

Fig. 1. A typical baseband communication system.
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