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a b s t r a c t

In this paper, we address the problem of function extension when the available data lies
on a homogeneous manifold (i.e. the domain of the function is a homogeneous manifold
embedded in the Euclidean space) and the function is band-limited. We solve this
problem in the general case in which the manifold is unknown. We assume that we have
sufficient labeled data to reconstruct the function from labeled data. We also assume that
we have enough data (at least exponential in the intrinsic dimension of the manifold) to
approximate the Laplace–Beltrami operator on the manifold. The proposed method has a
closed form solution and consists of matrix multiplication and inversion. As the size of
data approaches infinity, the proposed method converges to the optimal solution as long
as the function values are known on an appropriate sampling set. Simulation results
demonstrate the advantage of the proposed method over commonly used function
extension methods.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Supervised learning is a machine learning task of
inferring a function from labeled training data [1]. The
type of data and properties of the function are application
dependent. One of the most basic supervised learning
problem in the field of signal processing is sampling and
reconstruction of a band-limited function. When the data
points are real numbers and the function is band-limited,
the classical Nyquist theorem [2] states that the function
can be perfectly reconstructed from its values on equally
spaced points of reals, if the sampling rate is sufficiently
high. The values of the function on points other than
sampling points can be exactly calculated using SINC
interpolator. Schoenberg [3] used cardinal splines for the
reconstruction formula. There, it is shown that a band-
limited function can be reconstructed from its values sampled

at high enough rate (Nyquist rate) as accurately as needed
using cardinal splines of sufficiently high degree. This result
was further generalized to the case of nonuniform sampling
by Lyubarskii and Madych [4]. More specifically, they showed
that a band-limited function f(x), whose Fourier transform is
compactly supported between ½�π;π� can be completely
reconstructed using spline functions, from its samples f ðxnÞ
taken at sampling points xn, in the case when the functions
expðjxnωÞ, form a Riesz basis for L2ð½�π;π�Þ.

Pesenson [5] generalized the concept of band-limited
functions to the case that the domain of the function is a
homogeneous manifold and introduced the spectral entire
functions of exponential type and Lagrangian splines on
homogeneous manifolds. He also showed that on mani-
folds, the reconstruction of irregularly sampled spectral
entire functions of exponential type (from now on band-
limited functions) by splines is possible, as long as the
distance between points of a sampling sequence is small
enough.

Recently, using a different point of view, Coifman and
Lafon [6] proposed a simple scheme, based on the Nyström
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method for supervised learning and extending empirical
functions defined on a set X to a larger set X . The extension
process involves the construction of a specific family of
functions termed geometric harmonics. These functions
constitute a generalization of the prolate spheroidal wave
functions of Slepian in the sense that they are optimally
concentrated on X. Although being a powerful tool for
function extension, this scheme does not make use of
unlabeled data to improve the approximation of the
Laplace–Beltrami operator on the manifold.

Supervised learning can be also regarded as the problem
of function extension. The central dogma for studying the
problem of function extension on manifolds is that the
distribution of natural data is non-uniform and concentrates
around low-dimensional structures. The shape (geometry) of
the distribution can be exploited for efficient learning. As a
justification for manifold assumption of natural data, see
Jansen and Niyogi [7] for speech signals and Donoho and
Grimes [8] for images. Geometrically derived methods have
been used in applications such as image clustering [9,10],
image completion [11], speech enhancement in presence of
transient noise [12], voice activity detection in presence of
transient noise [13], linear and nonlinear independent com-
ponent analysis [14,15], parametrization of linear systems
[16], and single channel source localization [17].

Zhu et al. [18] introduced an approach for supervised
learning which is based on a Gaussian random field model.
Labeled and unlabeled data were represented as vertices in
a weighted graph, with edge weights encoding the simi-
larity between instances. The learning problem was then
formulated in terms of a Gaussian random field on this
graph, where the mean of the field was characterized in
terms of harmonic functions, and was efficiently obtained
using matrix methods or belief propagation. In [19], it is
shown that this method becomes ill posed as the number
of unlabeled points tends to infinity. This observation was
the motivation for Zhou and Belkin [20] to address the
semi-supervised learning problem and propose a solution
by using regularization based on an iterated Laplacian,
which is equivalent to a higher order Sobolev semi-norm.
Their proposed solution can alternatively be viewed as a
generalization of the thin plate spline to an unknown sub-
manifold in high dimensions.

In most practical applications, besides the function, the
data manifold is also unknown and just some labeled data
(the points that the value of function is known on them,
i.e. sampling points) and unlabeled data (the points that
the value of function on them must be determined, i.e.
interpolation points) are available. This means that the
sampling theorem on manifolds [5] cannot be utilized
directly to learn and extend the function to unlabeled data
because in [5], the manifold is assumed to be known.

In order to be able to use a sampling theorem on
manifolds, one needs to completely know the manifold.
This means that the Laplace–Beltrami operator on the
manifold must be known and can be computed for every
function. Many manifold learning algorithms have been
introduced during the last decade, among them one can
name isomap [21], Locally-linear embedding (LLE) [22],
Laplacian eigenmaps [23] and diffusion maps [24]. Diffusion
maps leverage the relationship between heat diffusion and

a random walk on a graph. The heat diffusion on manifold,
is the diffusion process whose infinitesimal generator is the
Laplace–Beltrami operator. In [24], an analogy is drawn
between the diffusion operator on a manifold and a Markov
transition matrix operating on functions defined on the graph
whose nodes were sampled from the manifold. It is also
shown that one can approximate the Laplace–Beltrami opera-
tor using appropriately normalized Markov transition matrix.

In this paper, we propose a novel technique for super-
vised learning when the data is assumed to be located on a
manifold. More specifically, we use diffusion maps as a
tool for manifold learning and approximating the Laplace–
Beltrami operator on a manifold. Next, we use sampling
theorem of band-limited functions on manifolds [5] to
extend the function onto the interpolation points. The
solution coincides with the method proposed in [20],
hence gives another justification for the method presented
in [20]. This paper is organized as follows. In Section 2, we
formulate the problem and introduce our function exten-
sion algorithm. In Section 3, we evaluate the performance
of our method and compare it to several available function
extension methods. We also discuss some applications of
the proposed method. We conclude the paper in Section 4.

2. Problem formulation

Let M be a C1-homogeneous manifold and Δ be the
Laplace–Beltrami operator in the corresponding Hilbert
space L2ðMÞ. We say that a function f ð�Þ from L2ðMÞ is
ω0-band-limited if the function satisfies the Bernstein
inequality [5]:

JΔk=2f Jrωk
0 J f J ð1Þ

for every natural even k, where J f J denotes L2ðMÞ norm.
Using Parseval's theorem, it can be easily verified that in
the special case where M¼R, this definition is equivalent
to the definition of band-limited functions (i.e. the Fourier
transform is compactly supported in �ω0;ω0½ �).

A set of points Zλ ¼ fxγg, is called a sampling sequence if

(a) infγaμ dist xγ ; xμ
� �

40,
(b) Balls Bðxγ ; λÞ form a cover of M, and
(c) λo c0ω0ð Þ�1,

where c0 is a manifold-dependent constant. In the case
M¼R, the last condition becomes the Nyquist sampling
condition if the sampling is uniform. It can be shown [5]
that any ω0-band-limited function can be exactly recon-
structed from its samples as long as the value of the
function is known on a sampling sequence.

In [5], it is shown that given an ω0-band-limited
function f ð�Þ on a d-dimensional manifold M, ϵ40 and a

sampling sequence Zλ, there exists a function f̂
k
such that

J f � f̂
k
Joϵ; k¼ 2ld; lAN ð2Þ

for a sufficiently large l. The function f̂
k
is the solution of

the following optimization problem:

f̂
k ¼ arg min

u
JΔk=2uJ
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