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a b s t r a c t

This paper discusses the development of a slope estimation algorithm called MAPSLOPE for
piecewise linear data that is corrupted by Gaussian noise. The number and locations of
slope change points (also known as breakpoints) are assumed to be unknown a priori
though it is assumed that the possible range of slope values lies within known bounds.
A stochastic hidden Markov model that is general enough to encompass real world
sources of piecewise linear data is used to model the transitions between slope values and
the problem of slope estimation is addressed using a Bayesian maximum a posteriori
approach. The set of possible slope values is discretized, enabling the design of a dynamic
programming algorithm for posterior density maximization. Numerical simulations are
used to justify choice of a reasonable number of quantization levels and also to analyze
mean squared error performance of the proposed algorithm. An alternating maximization
algorithm is proposed for estimation of unknown model parameters and a convergence
result for the method is provided. Finally, results using data from political science, finance
and medical imaging applications are presented to demonstrate the practical utility of this
procedure.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The need for piecewise linear regression arises in many
different fields, as diverse as biology, geology, and the
social sciences. This paper addresses the problem of direct
estimation of slopes from piecewise linear data. An impor-
tant application of interest for this paper is ultrasound
shear wave elastography, where ultrasonic echoes are used
to track the motion of an externally generated mechanical

shear wave pulse traveling through multiple tissue inter-
faces [19]. The time of arrival of this shear wave pulse is
recorded as a function of spatial coordinates in the ultra-
sound imaging plane and the reciprocal of the slope of this
function gives an estimate of the speed of the wave. Break-
points (where the slope changes) indicate tissue interfaces.
These estimates are useful from a clinical perspective
because they provide a way to quantify mechanical proper-
ties of tissue, thereby adding value to subjective judgments
about the location and size of cancerous tumors.

A similar issue in larger spatial dimensions occurs in
seismology where the time of arrival of seismic waves is
tracked at different locations relative to the epicenter of an
earthquake. The velocity of these waves provides informa-
tion about the mechanical properties of the geological
medium. Piecewise linear data also occurs in the study of
flow of soil through water streams and is referred to as
bedload data [20].
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1.1. Data model

Assume that the piecewise linear data is generated by
the following discrete time hidden Markov model (HMM).
The underlying (unknown) function takes on values Zn at
each discrete index 1rnrN. This function value is
obtained by accumulating slope values Sk up to the time
index n. Zero mean Gaussian noise with variance σ2 is
added to each running sum resulting in the observed
function value Xn. Also, suppose that for any n, the
probability of maintaining the previous slope value is p
and the probability of transitioning into a new slope value
is 1�p. These relations can be written mathematically as
follows:

Z0 ¼ 0 with probability 1;
Zn ¼ Zn�1þSn;

Xn ¼ Znþwn ð1Þ
for n¼ 1;…;N where wn �iidNð0; σ2Þ. A Markov structure is
imposed on the slope values as follows:

Sn ¼
Sn�1 with probability p

Un with probability 1�p

(

for n¼ 2;…;N where Un � Uðf0;1=ðM�1Þ;…; ðM�2Þ=
ðM�1Þ;1g\fSn�1gÞ denotes a discrete uniform random
variable taking on one of M�1 possible slope values and
the initial slope value is drawn uniformly as S1 � Uðf0;1=
ðM�1Þ;…; ðM�2Þ=ðM�1Þ;1gÞ.

Another implicit assumption is that the slopes can take
on values on a closed bounded interval ½sl; su� with upper
and lower limits 0oslosuo1 known a priori. For
instance, in the ultrasound-based wave tracking applica-
tion, the values of sl and su can be obtained from the
underlying physics which dictates that such mechanical
waves travel with speeds between 0.5 and 10 m/s in
homogeneous tissue. With the knowledge of sl and su,
the given data vector can be translated and rescaled so that
all slope values lie in the interval [0,1]. Hence, without loss
of generality, it suffices to design a slope estimation
algorithm that operates with a finite set of slopes
S ¼ f0;1=ðM�1Þ;…; ðM�2Þ=ðM�1Þ;1g. Intuitively, this
quantization step is justified because in the presence of
noise it is impossible to detect the difference between
slope values that differ only slightly.

1.2. Main contributions

The main contributions of this paper are as follows:

(a) a hidden Markov model formulation of the slope
estimation problem that is general enough to encom-
pass different applications;

(b) a procedure for maximum a posteriori (MAP) estima-
tion of slopes from this Markov model;

(c) a dynamic programming routine on a linearly growing
trellis for fast MAP estimation;

(d) a mean squared error (MSE) optimality analysis of this
routine via simulations and a comparison with reason-
able upper and lower bounds;

(e) an alternating maximization algorithm that alternately
maximizes an objective function with respect to the
unknown sequence of slope values and unknown
model parameters to jointly estimate both of them
from data;

(f) a comparison of the performance of this algorithm
with other methods in literature applied to real
world data.

1.3. Related work

In many real world applications, the local slope values
of an observed noisy function have interesting physical
interpretations. Most of the existing methods do not
directly address slope estimation; rather, they attempt to
fit a model to the data. For instance, standard regression or
spline-based methods can be used to fit a smooth function
to the data and local slopes can be estimated from this fit.
However, even if the function-fitting algorithm generates
optimal fits (according to a cost function such as the
minimum MSE), there is no guarantee that the local slope
estimates obtained from this fit are themselves optimal.
This paper bypasses the need for such post-processing by
directly estimating the slopes and breakpoints. This is
particularly useful when the slopes correspond directly
to the variables of interest and the breakpoints correspond
to where those variables change.

The topic of slope estimation from noisy data is quite old;
an early paper can be traced back to 1964 where the popular
Savitzky–Golay differentiator [10] was introduced. Their
main idea is to use a locally windowed least squares fit to
estimate the slope at each data sample, where the window
coefficients are chosen to satisfy a certain frequency response
that mimics a high pass filter together with some level of
noise averaging. Another similar technique that is used in
statistics is called locally weighted least squares regression
(LOWESS) [22]. However, these methods undesirably smooth
out the breakpoint locations in when data has sharp transi-
tions or jumps. In contrast, the algorithm in the present
paper prevents blurring the transitions by explicitly allowing
for sharp slope transitions using a Markov model.

In some situations, the raw data can be massaged using a
preprocessing step so that it becomes piecewise linear. The
simplest example is the case of piecewise constant data —

the running sum (integral) of such data yields a piecewise
linear function. Ratkovic and Eng [21] discuss a statistical
spline fitting approach combined with the Bayesian informa-
tion criterion (BIC) to detect abrupt transitions in political
approval ratings. Data from their paper is used in Section 6.1.
As a special case, their method can be applied when function
values stay almost constant over long intervals and occa-
sionally shift to a new value. In another application, Bai and
Perron [16] use statistical regression techniques to detect
multiple regime shifts in interest rate data. The algorithm
developed in the present paper provides comparable numer-
ical performance as the Bai–Perron algorithm as shown in
Section 6.2.

Closely related problems of piecewise linear regression for
noisy data have been addressed over the years. For example,
an early paper by Hudson [1] focuses on a technique to obtain
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