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The Quantization Theorem I (QT I) implies that the likelihood function can be reconstructed from quan-
tized sensor observations, given that appropriate dithering noise is added before quantization. We present
constructive algorithms to generate such dithering noise. The application to maximum likelihood estima-
tion (MLE) is studied in particular. In short, dithering has the same role for amplitude quantization as an
anti-alias filter has for sampling, in that it enables perfect reconstruction of the dithered but unquan-

tized signal’s likelihood function. Without dithering, the likelihood function suffers from a kind of alias-
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ing expressed as a counterpart to Poisson’s summation formula which makes the exact MLE intractable to
compute. With dithering, it is demonstrated that standard MLE algorithms can be re-used on a smoothed
likelihood function of the original signal, and statistically efficiency is obtained. The implication of dither-
ing to the Cramér-Rao Lower Bound (CRLB) is studied, and illustrative examples are provided.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Quantization was a well studied topic some decades ago, Op-
penheim and Schafer (1975), when the underlying reason was the
finite precision in electronics and micro-processors. Today, new
reasons have appeared that motivate a revisit of the area. One
is that cheap low-quality sensors have appeared on the market
which opens up many new application areas for embedded algo-
rithms, where the sensor resolution is much worse than the micro-
processor resolution. Some sensors are naturally quantized such
as radar range, vision (pixel quantization), cogged wheels to mea-
sure angular speeds, etc. Sensor networks is one hot research topic
where this work fits in. The conclusion is that quite advanced pre-
processing at the sensor node is possible to mitigate the effects of
sensor quantization.

This contribution regards the sensor readings as the only in-
stance where quantization effects are important. All subsequent
computations are done with floating point precision, or in fixed-
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point arithmetics with adaptive scaling of all numbers, which
means that internal quantization effects can be neglected. As one
example in this direction, Aysal, Coates, and Rabbat (2008) shows
that dithering helps a network to reach a consensus for estimat-
ing a signal mean when quantized samples from different nodes
are communicated. The paper (Wornell, Papadopoulos, & Oppen-
heim, 2001) motivates the parameter estimation problem in sensor
networks further, and develops some feedback strategies to the
sensors in the same spirit as in Agiiero, Goodwin, and Yuz (2007).
Statistical treatment of quantization effects was developed in
Widrow (1956) and Widrow, Kollar, and Liu (1996), and the newer
statistical analysis as surveyed in Wannamaker, Lipshitz, Van-
derkooy, and Wright (2000) and Widrow and Kollar (2008). They
show that quantization adds two kind of errors to the measure-
ment, the first one is a direct effect that can be modeled as additive
uniform noise (AUN), and the other one is an intrinsic alias like un-
certainty, where fast variations in the probability density function
(PDF) of the measurement noise are folded to low “frequencies” in
the cF domain (see Section 3.2). It is also known, Wannamaker et al.
(2000), that adding r uniformly distributed samples as dithering
noise enables reconstruction of all the first r moments of the un-
quantized signal, when uniform quantization is considered, where
applications to system identification is studied in Gustafsson and
Karlsson (2009a,b). This is known as Quantization Theorem II (QT
IT). However, reconstruction of moments is easier than reconstruc-
tion of the complete amplitude distribution and in particular the
likelihood function. The aliasing in the amplitude distribution can
be avoided by adding proper dithering noise, and this enables that
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the likelihood function can be reconstructed from quantized sensor
observations (QT I). Since this noise plays the same role in quanti-
zation and PDF reconstruction as an anti-alias filter does for sam-
pling and reconstruction, such dithering noise will be referred to as
band-limited (BL) noise. The theoretical requirements for a BL noise
were given in the 1950s in Widrow (1956) and later revisited in
Sripad and Snyder (1977).

A first contribution is to describe constructive ways to
generate such noise. Two methods are provided for generating
BL dithering noise, and one concrete algorithm based on accept-
reject sampling. For most cases adding dithering noise inevitably
destroys information. This is in perfect analogy with low pass
filtering used to avoid frequency aliasing. Information is thus
lost, but it is at least not misinterpreted leading to an estimation
bias. For the case of parameter estimation in 1-bit quantized
samples, Dabeer and Karnik (2006) and Dabeer and Masry (2008)
design the dithering noise by MSE optimization, trading off a
bias decrease to the variance increase due to dithering. Adding a
suitably designed dithering noise should simplify the derivation
of estimators. A second contribution is to utilize this new class of
dithering noise to maximum likelihood estimation problems. The
dithering noise implies that the discrete PDF of the quantized
signal can be computed by convolving the original likelihood with
first the dithering noise PDF and then the PDF of a uniform
distribution. That is, quantization can under some conditions
be regarded as adding uniformly distributed noise without
approximation regarding moment calculations and the likelihood
can be reconstructed by low pass filtering the discrete PDF.

The paper is organized as follows: Section 2 formalizes the
problem definition and provides some simple motivating exam-
ples. Section 3 summarizes the most important concepts from sta-
tistical quantization theory needed for the derivations. Section 4
presents the new methods to generate band-limited noise. In Sec-
tion 5, ML-estimation for different quantization cases are pre-
sented, and a performance bound is calculated. Section 6 concludes
the paper.

2. Motivation and problem formulation

2.1. Signal model

The signal model in this contribution includes a dithering noise
d, that is added to a stochastic signal z, before it is quantized to g,

Vi = 2z + dy, (1a)
Gk = QmYk- (1b)
Here, @, (-) denotes the quantization operator
A
—mA + 7 W< —(m—1)A4,
_ Yk A

Q=14 % |+ 5. —m-Da sy <m-1a4,

mA — 57 Ve = (m—1)A,

where the floor operator |x| denotes the largest integer that is
smaller than or equal to x, @ (y) defines the binary quantizer and
where @, (y) is defined as the unsaturated quantization function.

2.2. Maximum likelihood estimation

Consider now an estimation problem, where the signal z,(6),
k = 1,2,...,N depends on a vector 8 of unknown parameters
and the problem is to make inference of 8 from the quantized but
possibly dithered observations

qr = @m(zlc(6)+dl<)s k=1,2,...,N. (2)

Without quantization, there are many standard methods for solv-
ing the maximum likelihood (ML) method, where the expectation
maximization (EM) algorithm is possibly the most common one. For
quantization two approaches will be discussed in the following:
applying the ML method directly or using dithering to simplify the
problem.

2.2.1. General MLE for quantization

Parameter estimation using the ML method for quantization
has been discussed in for instance Balogh, Kollar, and Sarhegyi
(2010), Gustafsson and Karlsson (2009b) and Karlsson (2005). A
simple but instructive example is the unknown signal mean model
zk(0) = x+ey, where e, denotes white measurement noise and the
parameter vector 0 = (x, oez) contains the mean x and possible
also the variance 62 = E(e?). This example can be extended to
linear models z; = Hx + ey, a nonlinear model z, = h(x) + e,
nonlinear filtering zz = h(xy) + ex (where the state x; varies
over time according to a dynamic model) and system identification,
where 6 contains parameters in a dynamic model. The ML method
is applicable to all these cases, where the ML estimate (MLE) is
defined as

N
npzw (z1),

M- = arg max ! (3)
[ [ Paeao.
k=1

The MLE is statistically efficient, defined so that the bias as well as
the variance tend to zero as the number of samples N increases.
Computing the MLE using the likelihood pgj¢ (q) directly is mathe-
matically intractable in most cases and also suffers from the curse
of dimensionality. Example 1 illustrates one principal problem.

if unquantized,

if quantized.

Example 1. Consider the problem of estimating 6 in the Gaussian
distribution z(8) ~ W (6, 6%). The MLE can be shown to be

z z2

oML _ _ < e 2*27 4
2+ 4+ (4)

where z = Y3,z andz2 = Y0 ,12,( For quantized
observations qy(0) = Qo (zx(0)) and A = 1, each observation
is mapped to an integer i, and the likelihood for each quantized
observation g, = iA 4+ A/2 is given by

(i+1)A 1 _ (qk—ﬁ—z)2
Pijo (i) = e 27 dz. (5)
o iA 2m0

The likelihood function can be differentiated in €, however in
general it can be quite a lot of work doing so and an exhaustive
search over the integer space i = 0, 1, £2, ... is required to
compute the MLE.

2.2.2. MLE using dithering

As indicated in (2) dithering can simplify estimation when
dealing with quantized signals. In Section 4 a special class of
dithering noise that allows perfect reconstruction of the dithered
but unquantized signal is introduced, so the MLE can be computed
using the following likelihood

Pqi6 (Ak) = D29 * Pa * Pu(qi), (6)

where x denotes convolution, pg is the PDF of the dithering noise,
and p, denotes the PDF of a uniform distribution. That is, the
function to be minimized is the original likelihood function in
(3), smoothed with the PDF of dithering noise and a uniform
distribution. Example 2 illustrates this.
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