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a b s t r a c t

The paper shows that nonlinear retarded time-delay systems can admit an input–output representation
of neutral type. This behaviour represents a strictly nonlinear phenomenon, for it cannot happen in the
linear time-delay case where retarded systems always admit an input–output representation of retarded
type. A necessary and sufficient condition for a nonlinear system to exhibit this behaviour is given, and
a strategy for finding an input–output representation of retarded type is outlined. Some open problems
that arise consequently are discussed as well. All the systems considered in this work are time-invariant
and have commensurable delays.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In control theory, systems are usually described either by
a set of coupled first-order differential equations, called state-
space representation, or by higher order input–output differential
equations. In the linear case any control system described by
the state-space equations can equivalently be described by
higher order input–output differential equations. From that point
of view Laplace transforms play a key role. In the nonlinear
case the situation is more complicated, and several techniques
have been developed to find the corresponding input–output
equations; see for instance Conte, Moog, and Perdon (2007),
and Diop (1991). Considering the algebraic point of view, it
was shown by Conte et al. (2007) that for a given state-space
representation a corresponding set of input–output equations can
be, at least locally, always constructed by applying a suitable
change of coordinates. Such an idea of the state elimination has
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recently been carried over by Anguelova and Wennberg (2008)
to nonlinear time-delay systems, and it has been shown that
even for a state-space system with delays there always exists, at
least locally, a set of input–output differential-delay equations.
Note that the systems under consideration are time-invariant
and have commensurable delays. However, the state elimination
of Anguelova and Wennberg (2008) might result in a set of
input–output equations representing a system of neutral type,
even when one starts with the state-space equations being of
retarded type. This can also be suspected from the inversion
algorithm of Márquez-Martínez, Moog, and Velasco-Villa (2000).
Note that by retarded we mean a classical (non-neutral) system,
and by neutral a system having delays in the highest derivative.
Such a behaviour represents a strictly nonlinear phenomenon, for
it cannot happen in the linear time-delay case where retarded
systems always admit an input–output representation of a
retarded type, and forms the main scope of our interest in this
paper. In particular, we show why it cannot happen in the linear
time-delay case, and why and when it happens in the nonlinear
time-delay case.

The paper is organized as follows. In Section 2 an algebraic
background for dealing with nonlinear time-delay systems is
briefly recalled. The state elimination, and how it might result in
an input–output equation of neutral type, is discussed in Section 3,
and followed by the main results in Section 4 where we showwhy
this cannot happen in the linear time-delay case, and why and
when it happens in the nonlinear time-delay case. Then, a strategy
for obtaining an input–output representation of retarded type is
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suggested in Section 5. Finally, conclusions and open problems are
discussed in Section 6.

2. Algebraic setting

In this paper we use the mathematical setting of Anguelova
and Wennberg (2008); Márquez-Martínez, Moog, and Velasco-
Villa (2002); Moog, Castro-Linares, Velasco-Villa, and Márquez-
Martínez (2000) and Xia, Márquez-Martínez, Zagalak, and Moog
(2002).

Consider nonlinear time-delay systems of the form

ẋ(t) = f ({x(t − i), u(t − j); i, j ≥ 0})
y(t) = h({x(t − i); i ≥ 0}) (1)

where the entries of f and h are meromorphic functions, and x ∈

Rn, u ∈ Rm and y ∈ R denote state, input and output to the system
respectively.

Remark 1. Assuming the system has commensurable delays, it is
not restrictive to consider i, j ∈ N since all the delays can be treated
as multiples of an elementary delay τ .

Denote by imax the maximal delay in (1). The function of initial
conditions ϕ : [−imax, 0] → Rn is assumed to be smooth on an
open interval containing [−imax, 0]. The input (control variable)
u : [−imax,∞) → Rm is smooth for t > −imax. For a given ϕ, the
set of inputs u(t) forwhich there exists a unique solution to system
(1) in the interval [0,∞) are called admissible inputs. Let C ⊂ C∞

denote the open set ofϕwith a non-empty set of admissible inputs.
LetK be the field ofmeromorphic functions of {x(t−i), u(k)(t−

j); i, j, k ≥ 0}, and E = spanK{dξ ; ξ ∈ K} the formal vector space
of differential one-forms. Let δ denote the delay operator defined
as

δ(ξ(t)) = ξ(t − 1)
δ(α(t)dξ(t)) = α(t − 1)dξ(t − 1)

(2)

for any ξ(t) ∈ K and α(t)dξ(t) ∈ E .
The delay operator (2) induces the (non-commutative) skew

polynomial ring K(δ] with the usual addition and (non-
commutative) multiplication given by the commutation rule

δa(t) = a(t − 1)δ

for any a(t) ∈ K . The ring K(δ] is Noetherian and a left Ore
domain.

Lemma 2 (Ore Condition). For all nonzero a(δ], b(δ] ∈ K(δ] there
exist nonzero a1(δ], b1(δ] ∈ K(δ] such that a1(δ]b(δ] = b1(δ]a(δ].

The properties of system (1) can now be analysed by introducing
the formal module M = spanK(δ]{dξ ; ξ ∈ K}. The rank of a mod-
ule over the left Ore domain K(δ] is well-defined (Cohn, 1985).

Definition 3 (Xia et al., 2002). The closure of a submodule N in M
is the submodule

N = {w ∈ M; ∃a(δ] ∈ K(δ], a(δ]w ∈ N }.

That is, it is the largest submodule of M containing N with rank
equal to rankK(δ]N .

The notion of the closure of a submodule will play a key role
in showing why and when the systems of the form (1) admit an
input–output equation of a neutral type.

3. Input–output representation

3.1. State elimination

In this subsection we recall the state elimination of Anguelova
and Wennberg (2008). For the sake of simplicity we sometimes

use the notation ψ(δ, z1, . . . , zk) := ψ(z1(t), . . . , z1(t − i1), . . . ,
zk(t − ik), . . . , zk(t − ik)) for ψ and z1, . . . , zk in K with i1, . . . , ik
nonnegative.

Let f be an r-dimensional vector with entries fj ∈ K . Let ∂ f /∂x
denote the r × n matrix with entries
∂ f
∂x


j,i

=


ℓ≥0

∂ fj
∂xi(t − ℓ)

δℓ ∈ K(δ].

Denote by s the least nonnegative integer such that

rankK(δ]

∂(h, . . . , h(s−1))

∂x
= rankK(δ]

∂(h, . . . , h(s))
∂x

. (3)

The integer s is called an observability index. Let S = (h, . . . ,
h(s−1)) then rankK(δ]∂S/∂x = s ≤ n. Hence

∂h(s)

∂x
∈ spanK(δ]


∂(h, . . . , h(s−1))

∂x


.

Thus, there exists a nonzero polynomial b(δ] ∈ K(δ] such that

b(δ]
∂h(s)

∂x
∈ spanK(δ]


∂(h, . . . , h(s−1))

∂x


. (4)

That is

b(δ]
∂h(s)

∂x
=

s−1
j=0

bj(δ]
∂h(j)

∂x
(5)

for some bj(δ] ∈ K(δ], j = 0, . . . , s − 1. Therefore

b(δ]dh(s) +
m

r=1

J
j=0

cj,r(δ]du(j)r −

s−1
j=0

bj(δ]dh(j) = 0

for some J ≥ 0, where J is the highest derivative of u appearing
in the functions in S and cj,r(δ] ∈ K(δ]. We assume that the
polynomials b(δ], bj(δ] and cj,r(δ] have no common factors other
than 1. Since all functions are assumedmeromorphic, and we have
continuous dependence for the output on the input and initial
function, the above equality holds on an open and dense subset
of C . Applying the Poincaré lemma, we obtain a function ξ(t) ∈ K
such that

dξ = b(δ]dh(s) +
m

r=1

J
j=0

cj,r(δ]du(j)r −

s−1
j=0

bj(δ]dh(j) (6)

and

ξ

δ, y, . . . , y(s), u, . . . , u(J)


= 0. (7)

We have obtained an input–output representation for the sys-
tem (1).

3.2. Neutral input–output equations

The state elimination can result in an input–output equation
representing a system of neutral type, even if one starts with a
retarded system.

Definition 4. The input–output representation (7) of the system
(1) is said to be neutral, if

∂ξ(·)

∂y(s)(t − i)
≠ 0

for some i ≥ 1.

Simple systems can generate this phenomenon, as shown in the
following examples.
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