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a b s t r a c t

We construct hybrid loops that augment continuous-time control systems. We consider a continuous-
time nonlinear plant in feedback with a (possibly non stabilizing) given nonlinear dynamic continuous-
time state feedback controller. The arising hybrid closed loops are guaranteed to follow the underlying
continuous-time closed-loop dynamics when flowing and to jump in suitable regions of the closed-loop
state space to guarantee that a positive definite function V of the closed-loop state and/or a positive
definite function Vp of the plant-only state is non-increasing along the hybrid trajectories. Sufficient
conditions for the construction of these hybrid loops are given for the nonlinear case and then specialized
for the linear case with the use of quadratic functions. For the linear case we illustrate specific choices of
the functions V and Vp which allow for the reduction of the overshoot of a scalar output. The proposed
approaches are illustrated on linear and nonlinear examples.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

For a large class of nonlinear control systems which follow a
purely continuous dynamics, it may be useful to consider dynamic
controllers having a mixed discrete/continuous dynamics. This
leads to the class of hybrid control laws which has been
proven to relax certain limitations of continuous-time controllers.
Among other things, hybrid controllers are also instrumental to
improve the performance for nonlinear systems in the presence of
disturbances. See Prieur and Astolfi (2003) for the non-holonomic
integrator, and Sanfelice, Teel, Goebel, and Prieur (2006) for the
inverted pendulum to focus on applications only. Also for linear
plants, hybrid controllers can be fruitful. See Beker, Hollot, and
Chait (2001) for an example of a reset controller overcoming
intrinsic limitations of linear control schemes. See also Beker,
Hollot, and Chait (2004); Nes̆ić, Zaccarian, and Teel (2008) where
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reset controllers are used to decrease the L2 gain between
perturbations and the output. Consider also Aangenent, Witvoet,
Heemels, van deMolengraft, and Steinbuch (2010) where it is
shown that reset controllersmay be useful to improve theL2 orH2
stability of linear systems. Finally, see Lazar andHeemels (2009) for
the design of predictive controllers for the input-to-state stability
of hybrid systems.

In this paper we consider a nonlinear plant:

ẋp = f̄p(xp, u), (1)

with xp in Rnp , in feedback interconnection with a (not necessarily
stabilizing) dynamic controller:

ẋc = f̄c(xc, xp), u = h̄c(xc, xp), (2)

with xc inRnc . Then defining the closed-loop functions fp(xp, xc) =

f̄p(xp, h̄c(xc, xp)) and fc(xp, xc) = f̄c(xc, xp), the interconnection
between (1) and (2) can be described in a compact way as:

d
dt

(xp, xc) = (fp(xp, xc), fc(xc, xp)), (3)

where fp : Rnp × Rnc → Rnp and fc : Rnc × Rnp → Rnc . We
will assume that f̄p, f̄c and h̄c are such that fp and fc are continuous
functions satisfying fp(0, 0) = 0 and fc(0, 0) = 0.

The contribution of this paper is to design a suitable reset
rule, or jump law, for controller (2), and to design a partition of
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the state space Rn (where n = np + nc) in two subsets, called
flow and jump sets. The state xc of controller (2) endowed with
such additional logic, is then instantaneously reset according to
the jump law whenever the state belongs to the jump set. This
extended scheme, which is allowed to flow according to (3) only
if the state belongs to the flow set, defines a hybrid system.
More specifically, the proposedhybrid augmentation is designed to
guarantee the decrease of one or both of two scalar Lyapunov-like
functions, one of them V : Rnp ×Rnc → R≥0, defined on thewhole
state space, and the other one Vp : Rnp → R≥0 defined only in
the plant state subspace. The functions V and Vp can be selected to
capture some closed-loop stability and performance property (see
the developments in Section 3.2where output overshoot reduction
is tackled). FunctionsV andVp are linked to each other by a function
φ : Rnp → Rnc such that for all (xp, xc) in Rnp × Rnc

V (xp, φ(xp)) ≤ V (xp, xc), (4)

and, in particular, by the relation

Vp(xp) = V (xp, φ(xp)), ∀xp ∈ Rnp . (5)

Within the above scenario, we will design flow and jump sets and
jump rules such that the arising hybrid systems guarantee non-
increase of V or Vp, or both of them in two relevant cases:

(V ) (addressed in Section 2.1) where the function V (·, ·) is given
and satisfies suitable conditions guaranteeing the existence2
of φ(·) from which Vp(·) can be derived according to (5);

(Vp) (addressed in Section 2.2) where Vp(·) and φ(·) are given
(their existence resembles an asymptotic controllability
assumption), from which V (·, ·) satisfying (4) and (5) will be
constructed.

Section 3 deals with the special case where system (3) is linear.
In this case, quadratic versions of V and Vp can be constructed
under reasonably weak properties required for the closed-loop
dynamics. The extension to the linear case allows to strengthen
the nonlinear results by exploiting the homogeneity property of
hybrid systems acting on cones and obeying linear flow and jump
rules. Finally, as a last contribution of this paper, we will show
how to design Vp in item (Vp) to augment linear continuous-time
control systems with hybrid loops that reduce the overshoot of
a scalar plant output. In comparison to previous work, the aim
of this paper is to design hybrid strategies to guarantee some
asymptotic stability property by enforcing that suitable Lyapunov-
like functions are not increasing along the hybrid solutions.

The arising hybrid closed loop resembles the so-called impul-
sive systems, considered e.g. in Haddad, Chellaboina, and Kablar
(2001). However the objectives of Haddad et al. (2001) and of the
present paper are different. Indeed an inverse optimal control in-
volving a hybrid nonlinear-non-quadratic performance functional
is developed in Haddad et al. (2001), whereas here we provide a
design method of a hybrid loop (namely the jump map and the
jump/flow sets) to ensure asymptotic stability and non-increase of
suitable scalar functions. Our results are also linked to the event-
triggered control literature (see Anta & Tabuada, 2010) for stabil-
ity analysis of networked control systems, where it is necessary to
reduce the number of timeswhen the state ismeasured by the con-
troller and the actuators are updated. The most important differ-
ence between the results mentioned above and our contribution is
that in those works the resetting value for the state is uniquely as-
sociated to the transmission of a measurement sample, whereas in
our results it depends on the Lyapunov-like functions that should

2 Here, to keep the discussion simple, it is assumed that V is contin-
uously differentiable and that there exists φ(xp) ∈ argminxc∈Rnc V (xp, xc), which
implies (4).

not increase along solutions. Preliminary results in the direction
of the work of this paper have been presented, without proofs, in
Prieur, Tarbouriech, and Zaccarian (2010, 2011). Our preliminary
work also contains additional examples, not reported here due to
space constraints. The present paper provides an improved discus-
sion of the preliminary results, together with their proofs.

2. Main results: nonlinear case

2.1. Constructing Vp from V

In this sectionwe consider the closed-loop nonlinear system (3)
and a function V of the closed-loop state to address item (V ) of
Section 1. To this aim, we make the following assumption on the
function V .

Assumption 1. The function V : Rn
→ R≥0 is continuously

differentiable such that there exists a continuous differentiable
function φ : Rnp → Rnc such that

φ(xp) ∈ argminxc∈Rnc V (xp, xc). (6)

Moreover, there exists a class K function α such that, for all xp in
Rnp , xp ≠ 0,

⟨∇pV (xp, φ(xp)), fp(xp, φ(xp))⟩ < −α(V (xp, φ(xp))) (7)

where ∇pV denotes the gradient of V with respect to its first
argument.

Remark 1. In Assumption 1 we do not impose that (3) is globally
asymptotically stable, because (7) requires the function V to
be decreasing only in the subset of the state space defined
by (xp, xc) = (xp, φ(xp)). Nevertheless, if system (3) is globally
asymptotically stable, then there exist a function V : Rn

→ R≥0
and a class K function α such that ⟨∇V (x), f (x)⟩ < −α(V (x)) for
all x ≠ 0, which implies (7). Moreover note that in Assumption 1,
it is not required that argminxc∈RV (xp, xc) is a single valued map,
but only that a continuous differentiable selection of this map does
exist. For example, with V (xp, xc) = x4p + x4c − x2px

2
c , we have

argminxc∈RV (xp, xc) = {xp, −xp} which is not a singleton even
though Assumption 1 can be satisfied, e.g., with φ(xp) = xp. �

A natural way to stabilize the closed-loop system (3) is to flow
whenone (or both) ofV andVp is strictly decreasing and to reset the
xc-component of the state to the valueφ(xp) (where strict decrease
is guaranteed by (7)) when the function is not decreasing. This
leads to the following hybrid system3

ẋ = f (x) if x ∈ F̂ ,

(x+

p , x+

c ) = (xp, φ(xp)) if x ∈ Ĵ,
(8)

where F̂ ⊂ Rn and Ĵ ⊂ Rn are suitable closed subsets of the state
space such that F̂


Ĵ = Rn. In particular, F̂ and Ĵ are defined

by suitably combining the following two pairs of sets arising,
respectively, from the knowledge of V and Vp:

F = {x ∈ Rn, ⟨∇V (x), f (x)⟩ ≤ −ᾱ(V (x))}
J = {x ∈ Rn, ⟨∇V (x), f (x)⟩ ≥ −ᾱ(V (x))} (9)

F̄ = {x ∈ Rn, ⟨∇Vp(xp), fp(xp, xc)⟩ ≤ −ᾱ(Vp(xp))}
J̄ = {x ∈ Rn, ⟨∇Vp(xp), fp(xp, xc)⟩ ≥ −ᾱ(Vp(xp))}

(10)

where ᾱ is any class K function such that ᾱ(s) ≤ α(s) for all s ≥ 0
(this will be denoted next by the shortcut notation ᾱ ≤ α). We
state next our firstmain resultwhose proof is reported in Section 4.

3 For an introduction of the hybrid systems framework used in this paper, see,
e.g., the survey Goebel, Sanfelice, and Teel (2009) or the brief overview in Nešić,
Teel, and Zaccarian (2011, Section 2).
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