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a b s t r a c t

Existing statistical learning methods perform well when evaluated on training and test
data drawn from the same distribution. In practice, however, these distributions are not
always the same. In this paper we derive an estimable upper bound on the test error rate
that depends on a new probability distance measure between training and test distribu-
tions. Furthermore, we identify a non-parametric estimator for this distance measure that
can be estimated directly from data. We show how this new probability distance measure
can be used to construct algorithmic tools that improve performance. In particular,
motivated by our upper bound, we propose a new active learning algorithm for domain
adaptation. Comparative results confirm the efficacy of the active learning algorithm on a
set of 12 speech classification tasks.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Many signal processing andmachine learning tasks require
training data to learn the parameters of some underlying
model. Most of the theoretical analyses and practical con-
siderations in these applications are focused on scenarios
where training and test data come from the same distribution.
This may be justified in a number of small, controlled circum-
stances; however, in most applications, it is the case that, once
deployed, these algorithms will encounter data similar to, but
different from the training set. The focus of our work here is
on domain adaptation. That is, we are interested in developing
data-driven performance bounds for scenarios where there
exists some difference between training and test distributions.
These bounds are critical for understanding the conditions
under which a classifier trained on data from one distribution
can performwell on data drawn from another distribution; for
understanding how these conditions change as a function of
the difference between training and test distributions; and
for constructing algorithmic tools to improve performance.

To that end, in this paper, we derive a bound on the test error
as a function of a new probability distance between training
and test distributions. Further, we show that this measure can
be estimated using the non-parametric Friedman–Rafsky
statistic, originally proposed for the multivariate two-sample
test [17,18].

Domain adaptation has been a topic of some interest in the
literature recently, with the research focusing on practical
algorithms [1–5] and, more recently, on theoretical analysis
[6–8,10–12,16]. In [6,7], Ben-David et al. relate the expected
error on the test data to the expected error on the training
data. They restrict their analysis to a specific hypothesis class
of finite complexity and show that, for the selected hypothesis
class, the test error is bounded by theH-distance between the
training and test distributions. This distance measure was first
introduced in [9]. However, as the authors point out, this is
not a valid bound over all domain subsets, but rather on
subsets over which this type of hypothesis can commit errors.
In [8], the authors derive new bounds for the case where a
small subset of labeled data from the test distribution is
available. In [10], Mansour et al. generalize the H�distance to
the regression problem. In contrast to these models, we pro-
pose a general non-parametric bound that can be estimated
without assuming an underlying model for the data and
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without restrictions on the hypothesis class. In [11], the
authors present a new theoretical analysis of the multi-sou-
rce domain adaptation problem based on the Renyi diver-
gence. In particular, they develop optimal linear combina-
tion learning rules and characterize performance using the
Renyi divergence. Although helpful to understand perf-
mance, the Renyi divergence is difficult to compute in gen-
eral [13]; as we will show, the bound here can be estimated
without ever computing density estimates.

We use the derived bound to construct a new active lear-
ning algorithm in a domain adaptation setting. In active lear-
ning, an algorithm interactively queries an oracle for the label
of the data point that provides the greatest reduction in the
test error. This topic has received a great deal of attention in
the traditional learning literature where the assumption is
that training and test data are drawn from the same distribu-
tion. The survey article in [14] provides an overview. In the
context of domain adaptation, active learning has received less
attention. The authors in [15] propose a pool-based active
learning algorithm that uses the confidence of a pre-trained
classifier to identify sets of points for labeling. In [22], the
authors propose an online version of a similar algorithm and
extend it by ruling out data points similar to the training set.
Here we propose a multi-criteria cost function for active
learning motivated by the new bound and evaluate it on 12
speech classification tasks. Results indicate that the proposed
approach consistently yields a lower error rate than a compet-
ing alternative.

2. Domain adaptation bound

We consider a binary classification problem. Let us define
data from two domains, the source (training) and the target
(testing) domain and a corresponding labeling function for
each domain gS; gT: x-f0;1g that yields the true class label of
a given data point. The source domain, denoted by the pair
ðXS; gSðXSÞÞ, represents the data used to train the machine
learning algorithm and the data ðXT; gTðXTÞÞ represents the
data the algorithmwill encounter once deployed. The rows of
the source and target data are drawn from f SðxÞ and f TðxÞ.
The risk, or the probability that a hypothesis, h, disagrees with
the true labeling function is defined as

ϵSðh; gSÞ ¼ Ef SðxÞ½jhðxÞ�gSðxÞj�; ð1Þ
for the source data. It is similarly defined for the target data. In
Theorem 1, we identify a relationship between the error rates
on the source and target data.

Theorem 1. Given a hypothesis, h, the target error, ϵTðh; gTÞ,
can be bounded by the error on the source data, ϵSðh; gSÞ, the
difference between labeling functions, and a distance mea-
sure between source and target distributions as follows:

ϵTðh; gTÞrϵSðh; gSÞþEf SðxÞ½jgSðxÞ�gTðxÞj�
þ2DFRðf S; f TÞ; ð2Þ

where DFR f S; f T
� �¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

R
ðf SðxÞf TðxÞ

ð0:5f SðxÞþ0:5f TðxÞÞÞ dx

r
.

Proof of Theorem 1. The proof begins in the same fashion
as the result in [7] and then diverges:

ϵTðh; gTÞ ¼ ϵTðh; gTÞþϵSðh; gSÞ�ϵSðh; gSÞ
þϵSðh; gTÞ�ϵSðh; gTÞ ð3Þ

ϵTðh; gTÞrϵSðh; gSÞþjϵSðh; gTÞ�ϵSðh; gSÞj
þjϵTðh; gTÞ�ϵSðh; gTÞj ð4Þ

ϵTðh; gTÞrϵSðh; gSÞþEf SðxÞ½jgSðxÞ�gTðxÞj�

þ
Z

f TðxÞjhðxÞ�gTðxÞ
���� dx

����
�

Z
f SðxÞjhðxÞ�gTðxÞj dxj ð5Þ

ϵTðh; gTÞrϵSðh; gSÞþEf SðxÞ½jgSðxÞ�gTðxÞj�
þ

Z
jf TðxÞ� f SðxÞjjhðxÞ�gTðxÞj dx ð6Þ

ϵTðh; gTÞrϵSðh; gSÞþEf SðxÞ½jgSðxÞ�gTðxÞj�
þ

Z
j f TðxÞ� f SðxÞj dx ð7Þ

Going from (6) to (7), we recognize that the maximum
value of jhðxÞ�gTðxÞj is 1. In (7), we identify an upper
bound on the target error expressed using the Kolmogorov
total variation (TV) distance between source and target
distributions, D1 f S; f T

� �¼ 1
2

R
f T xð Þ� f S xð Þ dx

���� .
If we let

A f S; f T
� �¼ Z

f SðxÞf TðxÞ
0:5f SðxÞþ0:5f TðxÞ

dx; ð8Þ

then

1�A f S; f T
� �¼ Z

0:5f S xð Þþ0:5f T xð Þ d xð Þ

�
Z

f SðxÞf TðxÞ
0:5f SðxÞþ0:5f TðxÞ

dx ð9Þ

1�A f S; f T
� �¼ Z

0:5f SðxÞ�0:5f TðxÞ
� �2
0:5f SðxÞþ0:5f TðxÞ

dx: ð10Þ

An upper bound on the total variation distance can be
expressed in terms of Aðf S; f TÞ as follows:

D1 f S; f T
� �¼ 1

2

Z
f T xð Þ� f S xð Þ dx

���� ð11Þ

D1 f S; f T
� �¼ Z

0:5f TðxÞ�0:5f SðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5f SðxÞþ0:5f TðxÞ

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5f SðxÞþ0:5f TðxÞ

q ����� dx
�����

ð12Þ

D1ðf S; f TÞr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�Aðf S; f TÞ

q
ð13Þ

Going from (12) to (13), we make use of the Cauchy–
Schwarz inequality and simplify the resulting terms [19]. The
inequality in (13) upper bounds the total variation distance
in terms of Aðf S; f TÞ. We refer to this upper bound as the
Friedman–Rafsky (FR) distance, DFRðf S; f TÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�Aðf S; f TÞ

p
(named after the non-parametric estimator corresponding to
Aðf S; f TÞ [17,18]). □

The bound in Theorem 1 depends on three terms: the
error on the source data, the expected difference in the
labeling functions across the two domains, and a measure
of the distance between source and target distributions
(Friedman–Rafsky distance). We expect that the selected
training algorithm will seek to minimize the first term; the
second term characterizes the difference between labeling
functions in the source and target domains; the third term
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