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a b s t r a c t

This survey addresses stability analysis for stochastic hybrid systems (SHS), which are dynamical systems
that combine continuous change and instantaneous change and that also include random effects. We re-
emphasize the common features found in most of the models that have appeared in the literature, which
include stochastic switched systems, Markov jump systems, impulsive stochastic systems, switching
diffusions, stochastic impulsive systems driven by renewal processes, diffusions driven by Lévy processes,
piecewise-deterministic Markov processes, general stochastic hybrid systems, and stochastic hybrid
inclusions. Then we review many of the stability concepts that have been studied, including Lyapunov
stability, Lagrange stability, asymptotic stability, and recurrence. Next, we detail Lyapunov-based
sufficient conditions for these properties, and additional relaxations of Lyapunov conditions. Many other
aspects of stability theory for SHS, like converse Lyapunov theorems and robustness theory, are not
fully developed; hence, we also formulate some open problems to serve as a partial roadmap for the
development of the underdeveloped pieces.

© 2014 Elsevier Ltd. All rights reserved.

1. Overview

Stochastic hybrid systems (SHS) are dynamical systems that
combine continuous change and instantaneous change and that
include random effects. Some of the earliest references that
study systems with these features include Bellman (1954), Bergen
(1960), Bertram and Sarachik (1959), Rosenbloom (1955), Samuels
(1959) and Sworder (1969). Several important subclasses of
SHS have been studied extensively in the literature for the
last several decades. These subclasses include stochastic switched
systems (Chatterjee & Liberzon, 2004, 2006b; Dimarogonas &
Kyriakopoulos, 2004; Feng, Tian, & Zhao, 2011; Feng & Zhang,
2006; Filipovic, 2009), impulsive stochastic systems (Wu, Han, &
Meng, 2004), Markov jump systems (Chatterjee & Liberzon, 2006a,
2007; Mariton, 1990; Zhu, Yin, & Song, 2009), hybrid switching
diffusions (Deng, Luo, & Mao, 2012; Ghosh, Arapostathis, & Marcus,
1991, 1993; Hanson, 2007; Hespanha, 2005; Khasminskii, Zhu,
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& Yin, 2007; Mao, 1999; Mao, Yin, & Yuan, 2007; Mao &
Yuan, 2006; Pang, Deng, & Mao, 2008; Yin & Zhu, 2010; Yuan
& Lygeros, 2005a,b; Yuan & Mao, 2003), impulsive switching
diffusions (Yang, Li, & Chen, 2009), stochastic impulsive systems
driven by renewal processes (Antunes, Hespanha, & Silvestre, 2010,
2012, 2013a,b; Hespanha & Teel, 2006), diffusions driven by Lévy
processes (Applebaum, 2009; Applebaum & Siakalli, 2009; Bass,
2004; Fujiwara & Kunita, 1985), impulsive stochastic systems with
Markovian switching (Hu, Shi, & Huang, 2006; Wu & Sun, 2006),
piecewise-deterministic Markov processes (Costa, 1990; Costa &
Dufour, 2008; Davis, 1984, 1993; Dufour & Costa, 1999; Hordijk &
van der Duyn Schouten, 1984; Jacobsen, 2006; Yushkevich, 1983,
1986), stochastic hybrid automata (Bujorianu, 2004; Hu, Lygeros, &
Sastry, 2000), general stochastic hybrid systems (Bujorianu, 2012;
Bujorianu & Lygeros, 2006; Liu & Mu, 2006, 2008, 2009; Wu, Cui,
Shi, & Karimi, 2013), and stochastic hybrid inclusions (Teel, 2013).
In the most general models, instantaneous change is triggered
both randomly in time and also possibly by the state reaching
a certain region of the state space; moreover, the continuous
evolution may have a diffusive component and the state values
after instantaneous change may be determined via a probability
distribution.

Some major applications for which SHS models have been
usedin the literature (see also Cassandras & Lygeros, 2010)
include financial systems (Applebaum, 2009, §5.6, David et al.,
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2009, Hamilton, 1989, Ishijima & Uchida, 2011, Nunno, Meyer-
Brandis, Øksendal, & Proske, 2006, Schaller & Norden, 1997),
air traffic management systems (Hu, Prandini, & Sastry, 2005;
Pola, Bujorianu, Lygeros, & Benedetto, 2003; Prandini & Hu, 2008,
2009; Prandini, Hu, Lygeros, & Sastry, 2000; Watkins & Lygeros,
2003), communication networks and networked control systems
(Antunes et al., 2013a; Bohacek, Hespanha, Lee, & Obraczka, 2003;
Donkers, Heemels, Van De Wouw, & Hetel, 2011; Hespanha, 2004,
2005, 2007; Hespanha, Bohacek, Obraczka, & Lee, 2001; Tabbara &
Nesic, 2008), biological systems (Batt et al., 2005; De Jong et al.,
2003; Ghosh & Tomlin, 2001; Hu, Wu, & Sastry, 2004; Kærn,
Elston, Blake, & Collins, 2005; Lygeros et al., 2008; Rao, Wolf,
& Arkin, 2002; Singh & Hespanha, 2010; Wilkinson, 2012), and
power systems (Dhople, Chen, DeVille, & Dominguez-Garcia, 2013;
Malhamé, 1990; Malhamé & Chong, 1983; Malhamé & Chong,
1985; Ugrinovskii & Pota, 2005; Wang & Crow, 2011). For financial
systems, appreciation and volatility rates in financial markets may
be subject to random, abrupt switches based on perceptions of
investors and other unmodeled aspects of the economy. Air traffic
management systems must contend with aircraft mode switching
together with some diffusive, stochastic influences on aircraft
dynamics. Flows in communication networks may be affected by
random dropouts or congestion, and communication protocols
may contain different modes for different operating conditions.
Some biological concentration dynamics combine deterministic
continuous evolution with stochastic birth and death events and
promoter switching. Power systems can involve randomly-varying
loads, electronic noise, and mode switching.

As these application areas suggest, a solid grasp of stability the-
ory for SHS is useful for analysis or design of a wide range of
systems. Of special interest to the control community are feed-
back systems that employ logic variables and randomness, and that
perform well in the presence of discrete components, mechanical
impacts, and random phenomena. This fact motivates this paper,
which is a survey of stability analysis for SHS. In Sections 2–3, we
review the main subclasses of SHS that have appeared in the liter-
ature while re-emphasizing, like in Pola et al. (2003), the common
features found in most of these models. Section 4 addresses a vari-
ety of stability properties that have been considered in the SHS lit-
erature and Sections 5–7 summarize the basic known results about
these properties. Typically, these results are sufficient conditions
for stability that are expressed in terms of Lyapunov function can-
didates and bounds on the system’s ‘‘infinitesimal generator’’ ap-
plied to these functions. Such results are summarized in Section 5
and connected to the SHS literature in Section 6. Relaxations of Lya-
punov conditions are considered in Section 7.

SHS constitute an important generalization of non-stochastic
hybrid dynamical systems, for which significant breakthroughs
in stability theory have been carved out over the last decade
(Branicky, 1998; DeCarlo, Branicky, Pettersson, & Lennartson,
2000; Liberzon, 2003;Michel, Hou, & Liu, 2008), including converse
Lyapunov theorems, which establish the existence of smooth
Lyapunov functions for asymptotic stable compact sets, and a
variety of robustness properties (Goebel, Sanfelice, & Teel, 2012). In
contrast, these types of results for SHS are not yet fully developed.
Hence, in addition to surveying existing stability results, we pose
several open problems in an attempt to provide a partial roadmap
for the development of additional pieces that are needed to
complete the stability theory puzzle for SHS. This is the nature of
Section 8.

To keep the survey focused, we do not delve into SHS with
delays, stochastic functional differential equations, or singular SHS,
though we note that special types of such systems have been
studied in the literature and some sufficient conditions for stability
exist (Benjelloun & Boukas, 1998; Boukas, 2006a; Cao, Lam, & Hu,
2003; Huang & Mao, 2011; Ma & Boukas, 2009; Mao, 2002; Mao,

Fig. 1. A Càdlàg signal.

Matasov, & Piunovskiy, 2000;Mao& Shaikhet, 2000; Peng & Zhang,
2010; Wang, Qiao, & Burnham, 2002; Xia, Boukas, Shi, & Zhang,
2009; Yang, Xu, & Xiang, 2006; Yuan & Mao, 2004; Yue, Fang, &
Won, 2003; Yue & Han, 2005; Yue & Won, 2001). We also do not
spend time on linear (jumpMarkov) systems and associated linear
matrix inequalities for stability, though such results are extensive
in the literature (Aberkane, 2011; Basak, Bisi, & Ghosh, 1996;
Bolzern, Colaneri, & De Nicolao, 2010; Boukas, 2006b; Boukas &
Shi, 1998; de Souza, 2006;Dragan&Morozan, 2002; El Ghaoui&Ait
Rami, 1996; Fang & Loparo, 2002; Feng, Loparo, Ji, & Chizeck, 1992;
Fragoso & Baczynski, 2002a,b; Fragoso & Costa, 2005; Gerencsér
& Prokaj, 2010; Karan, Shi, & Kaya, 2006; Loparo & Fang, 2004;
Mariton, 1988, 1990; Wu, Ho, & Li, 2010; Xiong, Lam, Gao, &
Ho, 2005; Zhang & Boukas, 2009). Space constraints also limit
our discussion of the SHS literature’s exploration of almost sure
exponential stability (Deng et al., 2012; Mao, 1999; Mao et al.,
2007; Pang et al., 2008; Xiang, Wang, & Chen, 2011; Yuan &
Lygeros, 2005a), asymptotic stability in distribution (Yuan & Mao,
2003), and input-to-state stability (Wu et al., 2013; Zhao, Feng, &
Kang, 2012).

2. A unified framework

2.1. Solution candidates

Stochastic hybrid systems produce solutions defined on a
probability space (Ω, F , P) where Ω is the sample space, F
is the event space, and P is the probability function defined
on the event space. The symbol E is used for the associated
expected values. We use x ∈ Rn to denote the state of a SHS.
It may contain continuous-valued variables and discrete-valued
variables, including logic variables, counters, and timers. For most
of the SHS thatwe consider, solutions aremeasurablemappings x :

Ω → D([0, ∞), Rn), where D([0, ∞), Rn) denotes the space of
Càdlàg functions from [0, ∞) to Rn. A function φ : [0, ∞) → Rn is
Càdlàg if it is right continuous with left limits, that is, lims↓t φ(s) =

φ(t) for all t ∈ [0, ∞) and φ(t−) := lims↑t φ(s) exists for all
t ∈ (0, ∞). See Fig. 1. A solution evaluated at random time T ≥ 0
is denoted x(T). Both x and x(T) are functions of ω ∈ Ω , though
we rarely make the ω dependence explicit; the values of x belong
to D([0, ∞), Rn) while the values of x(T) belonging to Rn. For a
Borel set C ⊂ Rn, we use B(C) to denote the Borel σ -algebra on C;
B(C) = ∪A∈B(Rn) A ∩ C .

2.2. A common structure found in most models

Hybrid systems involve the combination of continuous change,
called flows, and instantaneous change, called jumps. SHS allow the
flows and the jumps to have random characteristics and also allow
the timing of jumps to be random. SHS that have appeared in the
literature include the following classes:
(1) switched and impulsive stochastic differential equations,
(2) systems with spontaneous jumps including:

(a) Markov jump systems,
(b) hybrid switching diffusions,



Download	English	Version:

https://daneshyari.com/en/article/696001

Download	Persian	Version:

https://daneshyari.com/article/696001

Daneshyari.com

https://daneshyari.com/en/article/696001
https://daneshyari.com/article/696001
https://daneshyari.com/

