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ABSTRACT

We consider the problem of assessing structural stability of biochemical reaction networks with mono-
tone reaction rates, namely of establishing if all the networks with a certain structure are stable regard-
less of specific parameter values. We investigate stability by absorbing the network equations in a linear
differential inclusion and seeking for a polyhedral Lyapunov function proper to the considered network
structure. A numerical recursive procedure is devised to test stability. For a wide class of mono- and bi-
molecular reaction networks, which we name unitary, the procedure is shown to be very efficient since,
due to the particular structure of the problem, it requires iterations in the space of integer-valued matri-
ces. We also consider a similar, less conservative procedure that allows us to test, even when the Lyapunov
function cannot be found, whether the system evolution is structurally bounded. In this case, we absorb
the equations in a positive linear differential inclusion. To show the effectiveness of the proposed proce-
dure, we report the outcomes of both a stability and a boundedness test, for many non-trivial biochemical
reaction networks, and we analyze well established models in the literature.
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1. Introduction

A vast literature agrees on the fact that chemical and biochem-
ical networks suffer from a major trouble: their parameters are
widely uncertain, time varying and depending on unpredictable
factors due to specific working conditions. On the other hand, it
is also recognized that particular behaviors depend on particular
structures, regardless of specific parameter values. Structural in-
vestigation aims at explaining how and why certain systems per-
form the proper tasks in completely different conditions (Alon,
2006).

If all the systems of a class characterized by a structure have a
certain property regardless of parameter values, such a property is
called structural (see for instance Blanchini & Franco, 2011, Franco
& Blanchini, 2012, Nikolov, Yankulova, Wolkenhauer, & Petrov,
2007). This concept is deeply related with robustness (Chesi &
Hung, 2008; El-Samad, Prajna, Papachristodoulou, Doyle, & Kham-
mash, 2006), with the difference that the latter concept is usually
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attributed to systems which can work under large parameter vari-
ations.

Structural analysis of chemical reaction networks, begun in the
early seventies (Horn, 1973a,b; Horn & Jackson, 1972), has pro-
vided fundamental results. Among the most celebrated are the
zero-deficiency theorem and the one-deficiency theorem (Fein-
berg, 1987, 1995a,b). The zero-deficiency theorem provides a
structural general sufficient condition (0-deficiency) assuring that
a chemical network described by mass action kinetics admits a sin-
gle positive stable equilibrium; 0-deficiency is immediately verifi-
able from an easy test on the network structure (i.e. the reactions)
and the proof nicely adopts the system entropy as a Lyapunov func-
tion. These results are still attracting a lot of attention (Ander-
son, 2008; Chaves, 2006; Craciun & Feinberg, 2005, 2006; Hangos,
2010). One fundamental assumption in the zero-deficiency theo-
rem requires the reaction kinetics to be of the mass action type,
hence polynomial (although a possible generalization is proposed
in Sontag, 2001). This is a widely accepted assumption; still there
are cases in which it is not necessarily satisfied, for instance non-
perfectly mixed systems.

In this paper we investigate stability without the mass action
kinetics assumption: we only require monotonicity of reaction
rates. We make use of polyhedral Lyapunov functions, which
have been successfully employed in the robustness analysis of
uncertain systems (see Blanchini & Miani, 2008 for a literature


http://dx.doi.org/10.1016/j.automatica.2014.08.012
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2014.08.012&domain=pdf
mailto:blanchini@uniud.it
mailto:giulia.giordano@uniud.it
http://dx.doi.org/10.1016/j.automatica.2014.08.012

F. Blanchini, G. Giordano / Automatica 50 (2014) 2482-2493 2483

survey)and have been used to prove the stability of compartmental
systems (Maeda, Kodama, & Ohta, 1978). Compartmental systems
are special cases of monotone systems (Smith, 2008) and can
be thought as monomolecular chemical reactions in which each

species can be transformed into another (e.g. A LICR B). Under the
assumption of increasing reaction rate, stability can be proved by
adopting as a Lyapunov function the 1-norm, which is a particular
polyhedral (or piecewise-linear) norm.

Recent attempts in using polyhedral norms as candidate
Lyapunov functions for biochemical networks have been proposed
in Blanchini and Franco (2011), Franco and Blanchini (2012),
although applied to quite specific problems.

The main idea of this paper is to investigate structural stabil-
ity of a wide category of chemical reaction networks by adopting
as candidate Lyapunov functions polyhedral norms, including the
1-norm as a special case. The main result is a procedure to gen-
erate piecewise-linear Lyapunov functions which may certify the
stability of all chemical reaction networks with a certain struc-
ture. To have an intuition of how a structure looks like, we sug-
gest the reader to give a preliminary look at Fig. 4, where several
possible cases are depicted. If a piecewise-linear Lyapunov func-
tion is derived, network stability is structural, in the sense that,
under some general monotonicity assumptions, it is assured for all
reaction rate functions. Consider, for example, the network corre-
sponding to the graph named Brahms5 in Fig. 4. The degradation
reaction A + E — ¢ introduces a negative feedback from the fi-
nal product E to A, which could be potentially destabilizing. Yet, by
finding a suitable polyhedral Lyapunov function, we can demon-
strate that the system is structurally stable, for any choice of the
reaction rate functions.

The contributions of the paper can be summarized as follows.

e We consider general chemical networks, both isolated and with
external inputs, under general monotonicity assumptions on
the involved reaction rate functions, thus without restricting to
mass action kinetics reactions.

e Based on the network structure only, we seek a polyhedral Lya-
punov function (actually a norm) for the system, by absorbing
the nonlinear system in a linear differential inclusion.

e We show that the existence of a polyhedral Lyapunov function
is equivalent to the stability of a proper discrete difference in-
clusion.

e A recursive procedure, based on the discrete difference inclu-
sion, is employed to generate the unit ball of the polyhedral
norm. In the case of unitary reaction networks, in which the sto-
ichiometric matrix has coefficients in {—1, 0, 1}, the procedure
enormously benefits from the fact that iterations occur in the
set of integer-valued matrices.

e The results in Maeda et al. (1978) follow as a special case, since
the procedure generates the 1-norm for compartmental sys-
tems.

e We show that a similar procedure can be adopted, when struc-
tural stability is not satisfied, to prove at least boundedness of
the state variables.

e We show that, once a polyhedral Lyapunov function is found,
we can investigate local stability of the equilibrium in isolated
systems within the stoichiometric compatibility class.

e We investigate structural stability of an extensive set of net-
works by our method. Surprisingly enough, non-trivial systems
can be managed without difficulties, providing either a pos-
itive certificate (by finding a piecewise linear function with
quite a small number of vertices) or a negative certificate (non-
existence of such a function).

2. Structural stability analysis

2.1. Model description and assumptions

We denote chemical species with uppercase letters and their
concentrations with the corresponding lowercase letter. We
consider the class of models

x=5g(x) + g (1)

where the state x € R} represents the concentration of biochemi-
cal species, g(x) € R™ is a vector of functions representing the re-
action rates and gg > 0 is a vector of constant influxes; S € Z™™
is the stoichiometric matrix of the system, whose entries s;; repre-
sent the net amount of the ith species produced or consumed by
the jth reaction, excluding the contribution of constant influxes.

Assumption 1. All the component functions of vector g(x) are
nonnegative and continuously differentiable. All their partial
derivatives are positive in the positive orthant.

Decreasing trends can be considered as well: in some cases, this
just requires changing sign to g. An important case is that of a
species which is present in a total amount x; > 0 and can be either
active, x;, or inactive, xj, with x; + x{ = X;. Since 0 < x; < X;, the
activation term must be the only positive term in the right side of
the equation. For instance, the equation

= —gn(a,b) + gc(@—a,c) (2)

includes the inhibition term g, and the activation term g,.

Assumption 2. Each component function of vector g(x) is zero if
and only if at least one of its arguments is zero. Moreover, if s;; < 0,
then g; must depend on x;.

Assumption 2, ensuring that for x; = 0 we have x; > 0, is required
to guarantee that (1) is a positive system. For instance, gi,(a, b) in
ba

b
(2) can be of the form KTvar but not Kira-

Example 2.1. The chemical reactions (Blanchini & Franco, 2012;
Kim & Winfree, 2011)
g (b*)

B* ——B

ab(a,b)
A_}_Bigb_‘]__\,q*’

3

Cra 29 aip g2

involve the genelet species A (and its inactive form A*), the in-
hibitor strand B (and its inactive form B*) and the RNA output C.
Along with the mass conservation constraints a = a + a* and
b = b+ b* + a*, these reactions correspond to the following ODEs

forx=[a b C]T

(= ge(@—a,c)—gula,b)
b=gy,(b—a+a—b)— gulab)
¢ =co— gacl@—a,c).

In this case we have

1 -1 0 8ac(@—a, )
S = [ 0 -1 1} ., g = _ 8av(a, b) ,
-1 0 0 g(b—a+a—b)

g0=[0 0 ] .

A (non-exhaustive) list of possible reactions, together with the
corresponding reaction terms appearing in the proper equations,
is reported next.
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