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a b s t r a c t

This paper considers continuous-time state estimation when part of the state estimate or the entire
state estimate is norm-constrained. In the former case continuous-time state estimation is considered by
posing a constrained optimization problem. The optimization problem can be broken up into two separate
optimization problems, onewhich solves for the optimal observer gain associatedwith the unconstrained
state estimates, while the other solves for the optimal observer gain associated with the constrained
state estimates. The optimal constrained state estimate is found by projecting the time derivative of an
unconstrained estimate onto the tangent space associated with the norm constraint. The special case
where the entire state estimate is norm-constrained is briefly discussed. The utility of the filtering results
developed are highlighted through a spacecraft attitude estimation example. Numerical simulation results
are included.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The control of a system often relies on an estimate of the sys-
tem state. Moreover, the majority of real systems are nonlinear.
For instance, estimates of position, velocity, attitude, and angular
velocity are needed to control spacecraft, aircraft, and ground ve-
hicles. As a result, the development of state estimators that can ro-
bustly and reliably provide a state estimate of a nonlinear process
is paramount.

Broadly speaking, stochastic estimation methods can be di-
vided into two main categories (Crassidis & Junkins, 2012; Jazwin-
ski, 1970; Simon, 2006): batch methods and sequential methods.
Batch methods, such as weighted-least-squares methods, sliding-
window filters, and smoothers, use many or all measurements to
estimate the state of the system over a range of time. Sequential
methods, themost popular being the Kalman filter (Kalman, 1960),
provide a state estimate in ‘‘one-step-ahead’’ fashion. Although
batch methods can generally provide a better state estimate, for
real-time and online applications, one-step-ahead methods are
often preferred. Historically, the Kalman filter and its nonlinear
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variants (e.g., the extended Kalman filter (EKF) Simon, 2006, pp.
400–403, the unscented Kalman filter (UKF) Julier, Uhlmann, &
Durrant-Whyte, 2000) have proven to be both computationally ef-
ficient and reliable. However, the traditional Kalman filter struc-
ture has no means to directly handle state constraints.

Various authors have considered discrete-time Kalman filter-
ing while simultaneously accounting for linear or nonlinear state
constraints. Inspiration for the present paper comes from Zanetti,
Majji, Bishop, and Mortari (2009) where Kalman filtering in a
discrete-time setting directly considering a norm constraint on all
or part of the state is considered. The derivation of the discrete-
time norm-constrained Kalman filter is accomplished by augment-
ing the objective function, that being theminimization of the error
covariance, with the norm constraint. A particularly interesting re-
sult highlighted in Zanetti et al. (2009) is that normalizing the un-
constrained estimate is in fact optimal.

Numerous other papers considering linear and nonlinear state
constraints appear in the literature. For example, in Alouani and
Blair (1993), Gupta (2007), Richards (1995), Tahk and Speyer
(1990) and Wang, Chiang, and Chang (2002) linear equality state
constraints are incorporated into the Kalman filter as pseudo-
measurements. Doing so leads to a measurement noise covariance
that is singular, which from a theoretical point of view is not
problematic, but numerical issues may arise (Simon, 2010). In
Gupta (2007) and Simon and Chia (2002) linear equality state
constraints are enforced by projecting the unconstrained state
estimate generated by the Kalman filter onto the constraint
surface. Thework of Simon andChia (2002) is extended in Yang and
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Blasch (2009)where nonlinear equality constraints are considered.
As an alternative to the approach developed in Chen (2010), Ko
and Bitmead (2007, 2010) and Simon and Chia (2002) use the
linear equality state constraints to formulate a projected system,
and then the Kalman filter is applied to the projected system to
generate a state estimate. Unscented Kalman filtering accounting
nonlinear equality state constraints is considered in Julier and
La Viola (2007). The sigma points generated via the unscented
transformation are projected onto the constraint surface. After
the mean is computed (which does not necessarily satisfy the
constraint), themean is projected onto the constraint surface. For a
survey of discrete-time Kalman filtering methods that account for
linear and nonlinear state constraints, see Simon (2010).

This paper considers continuous-time Kalman filtering subject
to a norm constraint on the state estimates. The main contribution
of this work is the derivation of the continuous-time norm-
constrained Kalman filter. This has not been previously considered
in the literature. Estimating the state when only part of the
state estimate is norm constrained and when the entire state
estimate is norm constrained is investigated. A subtle feature of
the filter presented is that, although a portion or the entire state
estimate must satisfy a norm constraint, the true system state
does not necessarily have to be constrained in the same way.
Additionally, unlike Zanetti et al. (2009) a weight on the norm is
incorporated into the filter formulation. Although inspiration for
this work comes from Zanetti et al. (2009), the solution presented
is different. Following the traditional continuous-time Kalman
filter derivation, the time derivative of the error covariance is
minimized. However, in order to force the state estimate to satisfy
the norm constraint, the objective function is augmented not with
the norm constraint directly, but with its time derivative. The
solution to the optimization problem posed results in the time
derivative of the unconstrained state estimate being projected
onto the tangent space of the constraint surface. This projection is
not forced upon the filter structure, but rather falls out naturally
from the derivation. To showcase the utility of the continuous-
time norm-constrained Kalman filter, the filter is used within an
extended Kalman filter (EKF) framework to estimate the attitude
of a rigid-body spacecraft. Spacecraft attitude estimation has
been extensively considered in the literature; see Bar-Itzhack
and Oshman (1985), Choukroun, Bar-Itzhack, and Oshman (2006),
Shuster (1989) and Shuster and Oh (1981), as well as the survey
paper Crassidis, Markley, and Cheng (2007).

The remainder of this paper is as follows. Preliminaries are
reviewed in Section 2. Section 3.1 considers state estimation
when only part of the state estimate is norm constrained. Norm-
constrained Kalman filtering when the entire state estimate is
constrained is briefly considered in Section 3.2. The role of a par-
ticular matrix, which is in fact a projection matrix, is discussed in
Section 3.3. Spacecraft attitude estimation is considered in Sec-
tion 4. The process and measurement models are presented in
Sections 4.1 and 4.2. The EKF form of the estimator, resulting in
the continuous-time norm-constrained EKF, is presented in Sec-
tion 4.3. Numerical simulation results are presented in Section 4.4.
The paper is drawn to a close in Section 5.

2. Preliminaries

Consider the continuous-time system

ẋ(t) = A(t)x(t) + B(t)u(t) + 0w(t)w(t), (1)
y(t) = C(t)x(t) + 0v(t)v(t), (2)

where x ∈ Rn is the system state, u ∈ Rnu is the known con-
trol input, y ∈ Rny is the measurement, w ∈ Rnw is the pro-
cess noise/disturbance, and v ∈ Rnv is the measurement noise.
The time-varying matrices A(·), B(·), C(·), 0w(·), and 0v(·) are of

appropriate dimension and piecewise continuous, and 0v(·) has
full row rank. The process and measurement noise are assumed to
be zero-mean and white with autocovariances E


w(t)wT(τ )


=

Q(t)δ(t−τ) and E

v(t)vT(τ )


= R(t)δ(t−τ), respectively, where

Q(·) ≥ 0 and R(·) > 0 are piecewise continuous. Additionally,
x(·),w(·), and v(·) are assumed to be independent for all time. To
be concise, the temporal argument of functions and matrices will
no longer be written unless clarity is required.

3. Norm-constrained Kalman filtering

3.1. Norm-constraining part of the state

Consider (1) and (2) partitioned in the following way:
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where z ∈ Rnz , q ∈ Rnq , and n = nz + nq. The matrices Azz,Azq,
Aqz,Aqq, Bz, Bq, 0w,z, 0w,q, Cz , and Cq are dimensioned appropri-
ately.

Consider the following linear estimator dynamics:
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where ẑ ∈ Rnz is the estimate of z, q̂ ∈ Rnq is the estimate of
q, r = y − ŷ is the measurement residual, and ŷ = Cz ẑ + Cqq̂
is the predicted measurement. The observer gain K̄ ∈ Rn×ny has
been partitioned into K̄z ∈ Rnz×ny and K̄q ∈ Rnq×ny . The estimate
ẑ ∈ Rnz is not constrained, however, q̂ ∈ Rnq is constrained in the
following way:

q̂TWq̂ = ℓ, ∀t ∈ R+, (6)

where W ∈ Rnq×nq ,W = WT > 0 is a constant weighting matrix.
The constraint (6) can be equivalently written as

√
Wq̂

 =
√

ℓ

where
√
W is the square root of the matrix W. Differentiating (6)

gives

2q̂TWT ˙̂q = 0, ∀t ∈ R+. (7)

The initial state estimates are ẑ(0) and q̂(0) where q̂T(0)Wq̂(0) =

ℓ. The objective at hand is to find K̄ in an optimal way so that
2q̂TWT ˙̂q = 0, ∀t ∈ R+, meaning that ˙̂q must be perpendicular
to Wq̂ for all time.

It is worth mentioning that although q̂ must satisfy (6) for all
time, the true state q is not required to satisfy qTWq = ℓ. Such
a situation may occur when a real system only approximately
satisfies qTWq = ℓ due to physical limitations, inaccuracies, or
deliberate simplification of a more complicated process.

The estimation error is defined as e = x − x̂. Using (3) and (5),
along with the definition of the estimation error, the error dynam-
ics are ė = (A − K̄C)e + 0ww − K̄0vv. Defining the estimation-
error covariance to be P(t) = E


e(t)eT(t)


, and assuming that K̄ is

non-random, it is straightforward to show that (Crassidis & Junk-
ins, 2012, p. 170)

Ṗ = (A − K̄C)P + P(A − K̄C)T + 0wQ0T
w + K̄0vR0T

vK̄
T. (8)
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