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a b s t r a c t

A novel two-layer economic model predictive control (EMPC) structure that addresses provable finite-
time and infinite-time closed-loop economic performance of nonlinear systems in closed-loopwith EMPC
is presented. In the upper layer, a Lyapunov-based EMPC (LEMPC) scheme is formulatedwith performance
constraints by taking advantage of an auxiliary Lyapunov-basedmodel predictive control (LMPC) problem
solution formulated with a quadratic cost function. The lower layer LEMPC uses a shorter prediction
horizon and smaller sampling period than theupper layer LEMPCand involves explicit performance-based
constraints computed by the upper layer LEMPC. Thus, the two-layer architecture allows for dividing
dynamic optimization and control tasks into two layers for a computationallymanageable control scheme
at the feedback control (lower) layer. A chemical process example is used to demonstrate the performance
and stability properties of the two-layer LEMPC structure.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Within process control, economic model predictive control
(EMPC) has ignited wide-spread interest because of its unique
ability to dynamically regulate processes to achieve closed-loop
economic performance not attainable through traditional tracking
control techniques (Adetola & Guay, 2010; Amrit, Rawlings, & An-
geli, 2011; Angeli, Amrit, & Rawlings, 2012; Baldea & Touretzky,
2013; Diehl, Amrit, & Rawlings, 2011; Fagiano & Teel, 2013; Fer-
ramosca, Rawlings, Limon, & Camacho, 2010; Grüne, 2013; Guay
& Adetola, 2013; Heidarinejad, Liu, & Christofides, 2012, 2013;
Huang, Biegler, & Harinath, 2012; Idris & Engell, 2012; Ma, Qin,
Salsbury, & Xu, 2012; Müller, Angeli, & Allgöwer, 2013; Omell &
Chmielewski, 2013). The fundamental difference between EMPC
and conventional model predictive control (MPC) is the cost func-
tion used in the formulations of these two control schemes. Typi-
cally, in conventional MPC schemes, a quadratic cost function that
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penalizes a weighted error of states and inputs from their econom-
ically optimal steady-state values is typically used, while, EMPC
schemes use a general cost function that is derived from the pro-
cess economics (e.g., operating cost or profit). As a result of the type
of cost function used, EMPC can handle both dynamic process eco-
nomic optimization and process control. To utilize EMPC for the
computation of optimal inputs in real-time, EMPC is formulated
with a finite prediction horizon.

An important, albeit not well understood property, is the
closed-loop performance of systems under EMPC since EMPC is
formulated with a finite prediction horizon. The main results on
closed-loop performancewith EMPC include: (1) EMPC formulated
with a terminal constraint has asymptotic (infinite-time) average
performance at least as good as the economically optimal steady-
state (Angeli et al., 2012) (others have extended asymptotic aver-
age performance to various EMPC formulations Amrit et al., 2011,
Fagiano & Teel, 2013, Müller et al., 2013), (2) EMPC formulated
without any (terminal) constraintswas shown to be approximately
optimal for both finite-time (i.e., transient) and infinite-timewhen
a sufficiently long prediction horizon is used and certain controlla-
bility assumptions are satisfied (Grüne, 2013), and (3) a Lyapunov-
based EMPC (LEMPC) which uses performance constraints derived
from an auxiliary conventional (tracking) MPC and a shrinking
horizon to guarantee that over a finite operating window the
closed-loop performance under LEMPC is at least as good as the
auxiliary conventional MPC (Heidarinejad et al., 2013). In Angeli
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et al. (2012), the effect of the initial condition is essentially ne-
glected since it is insignificant when considering operation for an
infinite-time period. Given the power of EMPC to yield dynamically
optimal regulation of systems operating away from steady-state,
the importance of considering the effect of the initial condition on
closed-loop performance should be considered as this is an impor-
tant property of EMPC. In Heidarinejad et al. (2013), on the other
hand, guarantees on closed-loop performance can only be made
over finite operating windows. Therefore, introducing an EMPC
structure that provides provable finite-time (i.e., accounts for the
effect of the initial condition) and infinite-time performance guar-
antees on closed-loop economic performance is an important is-
sue.

Another challenge of EMPC is that the achievable closed-loop
economic performance benefit of EMPC over conventional track-
ing MPC may strongly depend on the prediction horizon length
(e.g., Grüne, 2013). A long prediction horizon (i.e., many deci-
sion variables), however, may make it difficult to solve the EMPC
optimization problem for real-time applications. To address guar-
anteed closed-loop economic performance while formulating a
computationally efficient control structure, a novel two-layer
LEMPC structure is proposed in this work. The core idea of the
two-layer EMPC is to solve the upper layer LEMPC infrequently
(i.e., not every sampling period) over a long horizon. Then, take
advantage of the solution generated by the upper layer LEMPC in
the formulation of a lower layer LEMPC used for feedback con-
trol. Specifically, in the upper layer, an LEMPC, formulated with a
sufficiently large prediction horizon, is used to compute econom-
ically optimal trajectories which are sent down to the lower layer
LEMPC. The lower layer LEMPC uses a shorter prediction horizon
and smaller sampling time than the upper layer LEMPC to com-
pute control actions for the process in real-timewhile maintaining
operation around the economically optimal trajectories computed
in the upper layer. For guaranteed performance improvementwith
the proposed LEMPC scheme, both layers are formulated with ex-
plicit performance-based constraints computed from an auxiliary
Lyapunov-based model predictive control (LMPC) problem solu-
tion formulated with a quadratic cost which allows for provable
finite-time and infinite-time closed-loop economic performance
and effectively merges the provable performance guarantees on
finite-time and infinite-time performance compared to a conven-
tional (tracking) MPC. The two-layer LEMPC structure is applied
to a chemical process example to demonstrate the closed-loop
performance, stability, and robustness properties of the two-layer
LEMPC structure.

2. Preliminaries

2.1. Class of systems

The class of continuous-time nonlinear systems considered is
described by the following state-space form:

ẋ(t) = f (x(t), u(t)) (1)

where the state is x(t) ∈ Rn and the input is u(t) ∈ Rm. The vector
function f : Rn

× Rm
→ Rn is a locally Lipschitz vector function on

Rn
× Rm. The available control effort is defined by the convex set

U = {umin ≤ u ≤ umax} ⊂ Rm. The state x of the system is syn-
chronously sampled at time instances t0+k∆with k = 0, 1, 2, . . .
where t0 is the initial time and ∆ is the sampling period. With-
out loss of generality, the initial time is taken to be zero (t0 = 0).
To distinguish between the continuous time and the discrete sam-
pling instances, the notation t will be used for the continuous time
and the time sequence {τk}∞k=0 is the partitioning of t with τk = k∆.

A time-invariant economic cost measure le(x, u) is assumed to
describe the real-time economics of the system of equation (1)

and is assumed to be continuous on X × U where X ⊂ Rn is the
set of admissible operating states. The optimal steady-state x∗s and
steady-state input u∗s with respect to the economic cost function is
(x∗s , u

∗
s ) = argmaxus∈U, xs∈X {le(xs, us) : f (xs, us) = 0}. For the sake

of simplicity, the optimal steady-state is assumed to be unique and
to be (x∗s , u∗s ) = (0, 0). Furthermore, the notation |·| denotes the
Euclidean norm of a vector, the notation |·|Q denotes the square of
aweighted Euclidean norm of a vector (i.e., |x|Q = xTQxwhereQ is
a positive definite matrix), and the symbol Ωρ denotes a level set
of a Lyapunov function (i.e., Ωρ = {y ∈ Rn

: V (y) ≤ ρ}).

2.2. Existence of a stabilizing controller

Assumption 1. There exists a locally Lipschitz feedback controller
u = h(x) with h(0) = 0 for the system of equation (1) that ren-
ders the origin of the closed-loop system under continuous imple-
mentation of the controller h(x) locally exponentially stable. More
specifically, there exist constants ρ > 0, ci > 0, i = 1, 2, 3, 4
and a continuously differentiable Lyapunov function V : Rn

→ R+
such that the following inequalities hold for all x ∈ Ωρ :

c1 |x|2 ≤ V (x) ≤ c2 |x|2 , (2a)

∂V (x)
∂x

f (x, h(x)) ≤ −c3 |x|2 , (2b)∂V (x)
∂x

 ≤ c4 |x| , (2c)

for all x ∈ Ωρ .

Explicit feedback controllers that may be designed to satisfy
Assumption 1 are, for example, feedback linearizing controller and
some Lyapunov-based controllers (e.g., Khalil, 2002, Kokotović &
Arcak, 2001). With the controller h(x), the following results hold
for the closed-loop system of equation (1) under the controller
h(x) implemented in a zero-order sample-and-hold fashion with
sampling period ∆ (i.e., h(x) is applied as an emulation controller).

Proposition 2. Suppose Assumption 1 holds. Then, there exists∆∗ >
0 and M, σ > 0 such that for the partition {τi}∞i=0 of R+ with τi+1 −
τi = ∆ ≤ ∆∗ the closed-loop system of equation (1) with the input
trajectory

u(t) = h(x(τi)) for t ∈ [τi, τi+1) and integers i ≥ 0 (3)

and arbitrary initial condition x(0) = x0 ∈ Ωρ satisfies the estimate:

|x(t)| ≤ M exp(−σ t)|x0| (4)

for all t ≥ 0.

The proof of Proposition 2 may be found in Ellis et al. (2014,
Corollary 1) and shows thatV is a Lyapunov function for the closed-
loop sampled-data system in the sense that there exists a constant
ĉ3 > 0 such that

∂V (x(t))
∂x

f (x(t), h(x(τi))) ≤ −ĉ3 |x(t)|2 (5)

for all t ∈ [τi, τi+1) and integers i ≥ 0 where x(t) is the solution of
Eq. (1) starting from x(τi) ∈ Ωρ and with the input u(t) = h(x(τi))
for t ∈ [τi, τi+1). The stability region of the closed-loop system
under the controller h(x) is defined as Ωρ ⊆ X .

Remark 3. Assumption 1 is stronger than the one imposed in our
previous works (e.g., Christofides, Liu, & Muñoz de la Peña, 2011,
Heidarinejad et al., 2012). In the present works, the existence of a
controller h(x) that renders the origin of the closed-loop system lo-
cally exponentially stable under continuous implementation is as-
sumedwhereas, in Christofides et al. (2011) and Heidarinejad et al.
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