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a b s t r a c t

In this paper, we propose a musical-noise-free blind speech extraction method using a
microphone array for application to nonstationary noise. In our previous study, it was
found that optimized iterative spectral subtraction (SS) results in speech enhancement
with almost no musical noise generation, but this method is valid only for stationary
noise. The proposed method consists of iterative blind dynamic noise estimation by, e.g.,
independent component analysis (ICA) or multichannel Wiener filtering, and musical-
noise-free speech extraction by modified iterative SS, where multiple iterative SS is
applied to each channel while maintaining the multichannel property reused for the
dynamic noise estimators. Also, in relation to the proposed method, we discuss the
justification of applying ICA to signals nonlinearly distorted by SS. From objective and
subjective evaluations simulating a real-world hands-free speech communication system,
we reveal that the proposed method outperforms the conventional methods.
& 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

In the past few decades, many applications of speech
communication systems have been investigated, but it is
well known that these systems always suffer from the
deterioration of speech quality under adverse noise con-
ditions. Spectral subtraction (SS) is a commonly used noise
reduction method that has high noise reduction perfor-
mance with low computational complexity [1–5]. How-
ever, in this method, artificial distortion, referred to as
musical noise, arises owing to nonlinear signal processing,
leading to a serious deterioration of sound quality. To
achieve high-quality noise reduction with low musical
noise, an iterative SS method has been proposed [6–8].
Also, some of the authors have reported the very interest-
ing phenomenon that this method with appropriate
parameters gives equilibrium behavior in the growth of

higher-order statistics with increasing number of itera-
tions [9]. This means that almost no musical noise is
generated even with high noise reduction, which is one
of the most desirable properties of single-channel non-
linear noise reduction methods. Following this finding, the
authors have derived the optimal parameters satisfying the
no-musical-noise-generation condition by analysis based on
higher-order statistics. We have defined this method as
musical-noise-free speech enhancement, where no musical
noise is generated even for a high signal-to-noise ratio (SNR)
in iterative SS [10].

In conventional iterative SS, however, it is assumed that
the input noise signal is stationary, meaning that we can
estimate the expectation of noise power spectral density
from a time-frequency period of a signal that contains only
noise. In contrast, under real-world acoustical environ-
ments, such as a nonstationary noise field, although it is
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necessary to dynamically estimate noise, this is very
difficult. Therefore, in this paper, firstly, we propose a
new iterative signal extraction method using a micro-
phone array that can be applied to nonstationary noise.
Our proposed method consists of iterative blind dynamic
noise estimation by independent component analysis
(ICA) [11,12] and musical-noise-free speech extraction by
modified iterative SS.

Secondly, in relation to the proposed method, we discuss
the justification of applying ICA to signals nonlinearly dis-
torted by SS. We theoretically clarify that the degradation in
ICA-based noise estimation obeys an amplitude variation in
room transfer functions between the target user and micro-
phones. Next, to reduce speech distortion, we introduce a
channel selection strategy into ICA, where we automatically
choose less varied inputs to maintain the high accuracy of
noise estimation. Furthermore, we introduce a time-variant
noise power spectral density (PSD) estimator [13] instead of
ICA to improve the noise estimation accuracy. From objective
and subjective evaluations, we reveal that the proposed
method outperforms the conventional methods.

The rest of the paper is organized as follows. In Section 2,
we describe related works on SS and the musical noise
metric. In Section 3, the newmusical-noise-free blind speech
extraction method is proposed. In Section 4, an improvement
scheme for poor noise estimation is presented. In Section 5,
objective and subjective evaluations are described. Following
a discussion on the results of the experiments, we present
our conclusions in Section 6.

2. Related works

2.1. Conventional non-iterative spectral subtraction [2]

We apply a short-time discrete Fourier transform (DFT)
to the observed signal, which is a mixture of target speech
and noise, to obtain the time-frequency signal. We for-
mulate conventional non-iterative SS [2] in the time-
frequency domain as follows:

Yðf ; τÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jXðf ; τÞj2�βE½jNj2�

q
expðj argðXðf ; τÞÞÞ

ðif jXðf ; τÞj24β E½jNj2�Þ;
ηXðf ; τÞ ðotherwiseÞ;

8>><
>>: ð1Þ

where Yðf ; τÞ is the enhanced target speech signal, Xðf ; τÞ is
the observed signal, f denotes the frequency subband, τ is
the frame index, β is the oversubtraction parameter, and
η is the flooring parameter. Here, E½jNj2� is the expectation
of the random variable jNj2 corresponding to the noise
power spectra. In practice, we can approximate E½jNj2� by
averaging the observed noise power spectra jNðf ; τÞj2 in the
first K-sample frames, where we assume the absence of
speech in this period and noise stationarity. However, this
often requires high-accuracy voice activity detection.

2.2. Iterative spectral subtraction [6–8]

In an attempt to achieve high-quality noise reduction
with low musical noise, an improved method based on
iterative SS was proposed in the previous studies [6–8].
This method is performed through signal processing, in

which the following weak SS processes are recursively
applied to the noise signal (see Fig. 1). (I) The average
power spectrum of the input noise is estimated, (II) The
estimated noise prototype is then subtracted from the
input with the parameters specifically set for weak sub-
traction, e.g., a large flooring parameter η and a small
subtraction parameter β and (III) we then return to step (I)
and substitute the resultant output (partially noise reduced
signal) for the input signal.

2.3. Modeling of input signal

In this paper, we assume that the input signal X in the
power spectral domain is modeled using the gamma
distribution as

P xð Þ ¼ xα�1

ΓðαÞθα exp �x=θ
� �

; ð2Þ

where xZ0;α40, and θ40. Here, α is the shape para-
meter, θ is the scale parameter, and ΓðαÞ is the gamma
function, defined as ΓðαÞ ¼ R1

0 tα�1 expð�tÞ dt.

2.4. Mathematical metric of musical noise generation
via higher-order statistics for non-iterative spectral
subtraction [14]

In this study, we apply the kurtosis ratio to a noise-only
time-frequency period of the subject signal for the assess-
ment of musical noise [14]. This measure is defined as

kurtosis ratio¼ kurtproc=kurtorg; ð3Þ
where kurtproc is the kurtosis of the processed signal and
kurtorg is the kurtosis of the observed signal. Kurtosis is
defined as

kurt¼ μ4=μ
2
2; ð4Þ
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Fig. 1. Block diagram of iterative SS.
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