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a b s t r a c t

A covariance matching approach for identifying errors-in-variables systems is analyzed for the general
case. The asymptotic covariance matrix of the jointly estimated system parameters, noise variances and
auxiliary parameters is derived. An algorithm for how to compute this covariance matrix from given
system descriptions is also provided. The results generalize previous known special cases. Using Monte
Carlo analysis, we illustrate the proposed algorithm. The results suggest close agreement between the
theoretical and empirical accuracy.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Within system identification, the errors-in-variables problem is
known to contain several particular difficulties due to the presence
of measurement noise on both inputs and outputs (Söderström,
2007, 2012). A number of different estimator classes have been
proposed in the literature. Of these classes, the covariance
matching (CM) approach introduced in Söderström,Mossberg, and
Hong (2009) has an attractive tradeoff between computational
complexity and statistical performance. It was first formulated
for discrete-timemodels, but later generalized to continuous-time
models (Mossberg & Söderström, 2011b). It has been shown to
be closely related to structural equation modeling techniques,
which are developed in multivariate statistics for static problems
(Bartholomew, Knott, & Moustaki, 2011; Jöreskog, 1970). For
a description of such relations, see Kreiberg, Söderström, and
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Wallentin (2013). Other methods, also based on a finite number of
covariances obtained from the measured data, include the Frisch
method (Beghelli, Guidorzi, & Soverini, 1990; Guidorzi, Diversi, &
Soverini, 2008) as well as extensions of the instrumental variable
method. The development and description of suchmethods can be
found in Ekman (2005) and Söderström (2011).

The accuracy of the system parameter estimates for the CM
approach is analyzed in Söderström and Mossberg (2011), where
the asymptotic covariance matrix of the parameter estimates is
derived. In this paper, we generalize the analysis to also include the
accuracy of the estimated noise variances as well as the estimated
auxiliary parameters. An explicit algorithm for how to compute the
theoretical covariance matrix of the joint parameters is provided.
It turns out that the new result is not only more general but also
neater than the previous special case presented in Söderström and
Mossberg (2011).

There are good reasons for extending the analysis to also include
the noise variances and other auxiliary parameters. For instance, it
is of interest to consider the accuracy of the estimated noise vari-
ances, as these estimates can be used to obtain the signal-to-noise
ratios (that is, to assess the relative magnitude of the undisturbed
signal component and the measurement noise component in the
measurements. For example, for the output signal the SNR can be
computed as E


y20(t)


/E

ỹ2(t)


where E denotes the expectation

operator, cf. (3) below. Estimates of the variances involved in this
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expression for SNR can be computed from θ and rz , here given in (4)
and (7), respectively). Moreover, auxiliary parameter estimates are
of interest, not only as vehicle for obtaining the system parameter
estimates, but also for testing the physical relevance of these esti-
mates. As an example, one may require that the estimates of r0(τ )
in (7), (9) below form a positive definite sequence (although this is
not included in implementations for simplicity reasons). A test for
relevance would take the uncertainties of the estimated elements
of r0(τ ) into account when testing for positive definiteness.

2. Background

Consider the following errors-in-variables problem. The noise-
free inputs u0(t) and outputs y0(t) are linked through a dynamic
system of the form

A(q−1)y0(t) = B(q−1)u0(t), (1)

where q−1 is the backward shift operator, and

A(q−1) = 1 + a1q−1
+ · · · + anaq

−na ,

B(q−1) = b1q−1
+ · · · + bnbq

−nb .
(2)

The observed variables are

y(t) = y0(t) + ỹ(t)
u(t) = u0(t) + ũ(t) t = 1, . . . ,N. (3)

It is assumed that the measurement noises ỹ(t), ũ(t) are both
white, and that ỹ(t), ũ(t) and u0(t) are all mutually independent.
The noise variances will be denoted λy = E


ỹ2(t)


and λu =

E

ũ2(t)


, respectively. The aim of the identification is to estimate

the unknown parameter vector

θ =

a1 · · · ana b1 · · · bnb

T
. (4)

The covariance matching (CM) method for errors-in-variables
identification is now well known. It is described and analyzed
in Söderström et al. (2009). The asymptotic covariance matrix of
the parameter estimates is derived in Söderström and Mossberg
(2011).

The underlying principles can be summarized as follows. Intro-
duce

r ,

 ry
ru
ryu


, (5)

where

ry =

 ry(0)
...

ry(py)

 , ru =

 ru(0)
...

ru(pu)

 , ryu =

ryu(p1)
...

ryu(p2)

 , (6)

contain the covariance elements ry(τ ) = E {y(t + τ)y(t)}, etc. Fur-
ther, by defining

rz =


r0(0)

...
r0(k)
λy
λu

 , (7)

the system of equations

r = F(θ)rz =

 Fy(θ)
Fu(θ)
Fyu(θ)


rz (8)

can be derived. In (7),

r0(τ ) = E


1

A(q−1)
u0(t + τ)

1
A(q−1)

u0(t)


. (9)

For specific details on how the matrix F(θ) in (8) depends on θ, see
Söderström et al. (2009). Note that, compared to the presentation
in Söderström et al. (2009) and Söderström and Mossberg (2011),
we have 0 as the lowest index in ry and ru, and not 1. Further, we
have included the noise variances λy and λu in the vector rz .

The estimator

{θ̂, r̂z} = argmin
θ,rz

J(θ, rz), (10)

J(θ, rz) = ∥r̂ − F(θ)rz∥2
Q (11)

for θ and rz , based on (8), is suggested in Söderströmet al. (2009). In
(11), r̂ is an estimate of rwhile Q is a symmetric weighting matrix.
From (10),

r̂z =

FT (θ)QF(θ)

−1FT (θ)Qr̂, (12)

θ̂ = argmin
θ

V (θ), (13)

and

V (θ) = r̂T

Q − QF(θ)


FT (θ)QF(θ)

−1FT (θ)Q

r̂. (14)

Remark. The weighting matrix Q must be non-negative definite,
but not necessarily positive definite. There are important cases
where Q is positive semidefinite and thus singular. What matters
is that the matrix product FTQF is positive definite and hence
invertible, see (12). Specifically, if the matrix Q is chosen so that
the rows and columns corresponding to ry(0) and ru(0) are set to
zero, the matrixQ becomes singular. In that case, the CM approach
does not include estimation of the noise variances λy and λu, and
is the case originally treated in the paper Söderström et al. (2009).
It is hence a special case of the general formulation here. �

Remark. Structural equation modeling (SEM) can be seen as
closely related to the CM approach, see Kreiberg et al. (2013) for
some details. SEM includes several possible estimation criteria.
Some of these (specific examples include unweighted least squares
(ULS) and generalized least squares (GLS)) can indeed be trans-
formed into the general case in (11) by specific selection of the
weighting matrix Q. There are though also other possible SEM cri-
teria (for example the one often called maximum likelihood, and
labeledV1 in Kreiberg et al. (2013)) that cannot be transformed into
the form in (11). �

The following results are derived in Söderström and Mossberg
(2011).

Theorem 2.1. The asymptotic normalized covariance matrix of the
parameter estimates fulfils

Cθ , lim
N→∞

Ncov(θ̂)

= [STPS]−1STPRPS[STPS]−1. (15)

Here,

P = Q − QF

FTQF

−1 FTQ, (16)

R = lim
N→∞

NE

(r̂ − r)(r̂ − r)T


, (17)

S =

s1 · · · sna+nb


, (18)

sj = Fjrz, (19)

Fj =
∂F(θ)
∂θj

, (20)
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