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a b s t r a c t

This paper considers the problem of optimum sensor placement in 2D for source
localization using time of arrival measurements. We adopt a compact expression of the
Fisher information matrix and derive the condition for sensor placements that will
minimize the trace of the Cramer–Rao lower bound matrix of a source location estimate.
The proposed placement criterion and solution framework apply to both fully and
partially controllable sensor networks.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

For several decades, source localization has found wide
applications in many fields, such as radar, sonar, wireless
communications and recently sensor network [1–3].
Extensive research efforts have been put on the design of
various algorithms to obtain a source location estimate
that approaches the Cramer–Rao lower bound (CRLB)
accuracy as much as possible. On the contrary, relatively
limited attentions are focused on the impact of the sensor
array geometry on the achievable localization accuracy.

For angle of arrival (AOA) or bearing-only localization,
characterization of the optimal sensor-target geometry has
been derived using various scalar measures of the CRLB or
the Fisher information matrix (FIM) [4–7]. In time difference
of arrival (TDOA) localization, Yang and Scheuing [8] derived
the necessary and sufficient conditions for the optimum
sensor array geometry that minimizes the CRLB and pre-
sented different placement strategies [9] to achieve this

purpose. Similarly, by analyzing the geometry in terms
of the Cramer–Rao inequality, Bishop et al. stated explicit
results in terms of the relative angular geometry of the
sensors with respect to the source for TOA localization [7,10].
Zhou et al. [11] also reached the same results for placing
landmarks in TOA wireless localization. All these optimum
sensor placement investigations assume that the position of
every sensor is changeable, a scenario that will be referred to
as a fully controllable sensor network. In practice, most of the
sensors are at fixed locations and only a few can vary their
positions, resulting in a partially controllable sensor network.
In such a case, the optimum placement techniques found in
the literature are not applicable.

In the paper, we derive condition and propose solution
for optimum sensor placement in 2D TOA localization that
are applicable to both fully and partially controllable sensor
networks. The criterion of optimum placement is the trace of
the CRLB of a source location estimate [7,10]. By adopting a
compact expression of the FIM introduced in [12], both the
fully and partially controllable sensor networks can be
studied under a common framework. Although the results
for fully controlled networks are available in the literature,
the optimum sensor placement for partially controllable
networks is the first time to be considered to our knowledge.
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2. Problem formulation

We study the optimum sensor placement problem in 2D.
The localization geometry has M sensors at positions si,
i¼ 1;2;…;M and they are used to locate an emitting source
at unknown position u, where si and u are 2D column vectors
of Cartesian coordinates. This is achieved by observing the
TOAs from the source to the sensors. Since the product of TOA
with the signal propagation speed equals distance, we shall
use TOA and distance (range) interchangeably.

Let ri
o
be the true distance between the source and the

sensor i, hence from geometric relationship

roi ¼ Ju�si J ð1Þ
where JnJ represents the 2-norm. The TOA measurement
between the sensor at si and the source is

ri ¼ roi þni ð2Þ
where ni is the noise. The measurement vector contains the
M TOAs r¼ ½r1; r2;…; rM �T ¼ roþn. The noise n is assumed
to be a Gaussian distributed random vector with zero-mean
and known covariance matrix Q r ¼ diagðs21;s22;…; s2MÞ.

Among all M sensors, the first M�N of them have been
deployed at fixed locations. The last N are the new sensors
to be added to improve the localization accuracy of the
unknown source. The objective is to determine where to
place the N sensors in order to achieve the best possible
localization performance.

3. CRLB

The CRLB, which is the inverse of the Fisher Informa-
tion Matrix (FIM), provides the lower bound on the
covariance matrix of any unbiased estimator. We shall
use the trace of the CRLB as the optimization criterion for
the sensor placement problem.

Based on the Gaussian TOA model and the definition of
ri
o
in (1), the FIM of u is

FIMðuÞ ¼ CRLBðuÞ�1 ¼ ½ρ1; ρ2;…; ρM �Q �1
r ½ρ1; ρ2;…; ρM�T : ð3Þ

ρi is defined as a unit vector pointing from the source to
the sensor at si, i.e.

ρi ¼
si�u
roi

¼ ½ cos φi; sin φi�T : ð4Þ

4. Optimum placement of the sensors

We first introduce a compact description of the FIM
proposed in [12] that was used to illustrate the increase in
Fisher Information of a source location estimate when a
new sensor node is added in non-collaborative localiza-
tion. We shall extend the FIM formula in Theorem 2 of [12]
from having one new sensor to multiple and derive the
optimum sensor placement.

From (3), separating the information of the fixed and
the new sensors gives

FIMðuÞ ¼ FIMðuÞf þ ∑
M

i ¼ M�Nþ1
λiρiρ

T
i ð5Þ

where λi ¼ s�2
i and FIMðuÞf ¼∑M�N

i ¼ 1 λiρiρ
T
i . Note that

FIMðuÞf is a 2�2 matrix and its eigen-decomposition can
be written as [12]

FIMðuÞf ¼Uθ

μ 0
0 η

" #
UT

θ ð6Þ

where μ and η are the two eigenvalues with μZη. The
corresponding eigenvectors are the columns of

Uθ ¼
cos θ � sin θ

sin θ cos θ

� �
: ð7Þ

Note that Uθ is actually a rotation matrix with angle �θ.
Indeed, μ and η correspond to the minor and major axes of
the concentration ellipse and θ the rotation angle. For ease
of illustration in the following, the right-hand side of (6) is
denoted by Fðμ; η; θÞ.

Taking inverse of FIMðuÞf in (6) and computing the
trace yield the localization accuracy when using the first
M�N fixed sensors

tr CRLBðuÞf
� �

¼ tr FIMðuÞ�1
f

� �
¼ 1

μ
þ 1

η
ð8Þ

where the properties U�1
θ ¼UT

θ and trðABCÞ ¼ trðBCAÞ have
been used.

Similarly, the eigen-decomposition of the entire FIM
with all M sensors can also be written as

FIMðuÞ ¼ FðμN ; ηN ; θNÞ ¼ Fðμ; η; θÞþ ∑
M

i ¼ M�Nþ1
λiρiρ

T
i ð9Þ

where by extending Theorem 2 of [12] from one to N
additional sensors,

θN ¼ θþ 1
2
arctan

b
μ�ηþa

ð10aÞ

μN ¼ μþηþ∑M
i ¼ M�Nþ1λi
2

þ Δ

2
ð10bÞ

ηN ¼ μþηþ∑M
i ¼ M�Nþ1λi
2

� Δ

2
ð10cÞ

Δ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμ�ηþaÞ2þb2

q
ð10dÞ

a¼ ∑
M

i ¼ M�Nþ1
λi cos 2φ0

i ð10eÞ

b¼ ∑
M

i ¼ M�Nþ1
λi sin 2φ0

i ð10f Þ

with φ0
i ¼ φi�θ. As a result, the localization accuracy when

using all M sensors is

tr CRLB uð Þð Þ ¼ 1
μN

þ 1
ηN

¼ 4
μþηþ∑M

i ¼ M�Nþ1λi

ðμþηþ∑M
i ¼ M�Nþ1λiÞ2�Δ2

:

ð11Þ
Note that only φi and hence φ0

i in (11) are variables that can
be changed and all the others, μ, η, θ and λi are constant.
Indeed, φi determine the position of the new N sensors
relative to the source as can be seen from (4). Hence the
optimum sensor placement problem is solved by minimizing
trðCRLBðuÞÞ in (11) which is equivalent to the minimization
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