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a b s t r a c t

A stabilizing controller designed without considering quantization may not be effectively implemented
for the systems with quantized information due to quantization errors. Hence, an interesting issue is
how to design the quantizer such that the desired system performance can be still attained by the
above controller. In this work, a new control strategy with on-line updating the quantizer’s parameter
is proposed. This scheme may ensure the controlled system to attain the same dynamic performance,
H∞ disturbance attenuation level, as the one without signal quantization. A practical adjusting rule on
quantizer’s parameter is proposed such that the state-dependent parameter is available on both sides of
encoder/decoder. Finally, some numerical examples have been provided to illustrate the present control
scheme.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, much attention has been paid to the study
of networked control systems (NCSs), in which control loops are
closed via digital communication channels. The insertion of com-
munication networks brings some features, such as low cost, re-
duced weight, simple installation and maintenance, and increased
system wiring. However, NCSs also yield some detrimental phe-
nomena, e.g., quantization error, data packet losses, signal trans-
mission delay, etc.

It is known thatwhen system information, state/control signals,
is transmitted by the digital communication channel, they are usu-
ally quantized before transmission. That is, the real value signals
are mapped into piecewise constant signals taking values in a fi-
nite set. Apparently, these quantized signals will make the analy-
sis and design of the control system become more complex due to
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quantization errors. Hence, many important results involving var-
ious quantization methods have been recently presented; see, e.g.,
Corradini and Orlando (2008); Elia and Mitter (2001); Fu and Xie
(2005); Kameneva and Nesic (2009); Liu, Ho, and Niu (2012); Nair
and Evans (2003); Sharon and Liberzon (2012) and Yun, Choi, and
Park (2009). Especially, Gao andChen (2008) proposed anewquan-
tization dependent Lyapunov function approach to the problems
arising from quantized feedback control. It is noted that a common
feature in the aforementioned works is to investigate the effect of
measurement quantization in the design of the controller such that
the resultant closed-loop system attains the desired performance.

On the other hand, many existed control laws have been effec-
tively designed for systems without involving signal quantization.
If these existed control laws are directly applied to the systemwith
quantized signals, the quantization effects may lead to the deterio-
ration of system performance or even instability (Liberzon, 2003).
Thus, the following two questions are frequently asked: (Q1) how
can these existed control laws be effectively utilized in the case
involving signal quantization? (Q2) What conditions should the
quantizer satisfy so that the desired system performance, e.g., sta-
bility, can be still ensured?

Obviously, the above issues are interesting and significant. If
these questions can be well addressed, many existing control laws
may be utilized for the systems involving signal quantization. Re-
cently, some corresponding works have been presented. Among
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them, Brockett and Liberzon (2000) proposed a hybrid control
strategy combining with a suitable adjusting policy for the sensi-
tivity of the quantizer such that, when the states were quantized,
an existed state feedback control law could still ensure the sta-
bility of the closed-loop system as in the case without involving
quantization. This approach was further extended to more general
nonlinear systems in Liberzon (2003) and a discrete-time linear
system in Zhai, Matsumoto, and Chen (2004), respectively. The key
feature of the above control strategies is that the quantizer’s pa-
rameters are adaptively updated at discrete instants of time and
these switching events, determined by the values of the suitable
Lyapunov function, resulted in a hybrid quantized feedback control
policy. However, as pointed out in Zhai, Chen, and Imae (2006), the
above adjusting strategies dependent on time cannot be applied to
the system with disturbance input, e.g., H∞ control system, due to
the value of the disturbance input unavailable. In order to dealwith
the problem, Zhai et al. (2006) proposed a state-dependent strat-
egy for adjusting the quantizer’s parameters so that the system
with quantized signals was asymptotically stable and achieved the
same H∞ disturbance attenuation level as the one without quanti-
zation, which was also extended to uncertain interconnected net-
worked systems in Chen, Zhai, Gui, Yang, and Liu (2010).

With a zooming variable added to the quantization scheme,
it is known that the dynamic quantizer can deal with both large
and small variables in a simple way. These properties have been
reflected in the design of quantized feedback control (see Remark
3.2 in Fu & Xie, 2009b) to avoid those saturation and dead-zone
problems arising from quantization. A detailed discussion can also
be found in the recent survey paper Jiang and Liu (2013) on
dynamic quantizer which is used to enlarge the stability region for
quantized nonlinear systems which cannot be achieved by static
quantizer.

However, for the aforementioned state-dependent strategy,
an interesting issue is how to make the quantizer’s parameters
available on both sides of encoder/decoder, since the value of state
received by decoder is only a quantized one. This problem concerns
how to implement the proposed scheme in practical applications
and it motivates the present research. A practical adjusting rule
will be proposed in this work, whose idea may also be utilized to
handle the implementation problem in Chen et al. (2010) and Zhai
et al. (2006) in which the above issue was not explicitly discussed.

In this work, the system in consideration may be subject to
data packet losses, which is usually inevitable when the signals
are transmitted via the network. It is known that the data packet
dropoutmay be catastrophic andmay deteriorate the performance
of real time systems. Hence, many interesting results have been
recently obtained in, e.g., Gao, Chen, and Lam (2008); Niu and Ho
(2010); Quevedo, Ostergaard, and Nesic (2011); Sinopoli, Schen-
ato, and Franceschetti (2008);Wu and Chen (2007); Xiong and Lam
(2007) and You and Xie (2011). Moreover, Gao et al. (2008) pro-
posed a novel delay system approach by the simultaneous con-
sideration of quantization, delay, and packet dropout, which has
emerged as an important and effectivemethodology for networked
control analysis and synthesis. Especially, an estimating strategy
was proposed in Niu and Ho (2010) to compensate the state losses.
By adopting the similar estimatingmethod as inNiu andHo (2010),
a robust controller without considering quantization is first de-
signed in this work such that the resultant closed-loop system at-
tains a prescribed H∞ disturbance attenuation level. However, the
desired system performance cannot generally be ensured by the
above H∞ controller, when the system’s states are quantized be-
fore communicating to the controller. Hence, this work proposes a
dynamic quantizer, whose parameter is adjusted on-line depend-
ing on system states, such that the desired H∞ stability can be
still achieved. Moreover, a practical adjusting rule on the state-
dependent quantizing strategy is also given. It is shown that the

quantizer’s parameter is a piecewise constant, which is available
on both sides of encoder/decoder. Due to its dependence on both
the system state and the probability of packet dropout, the dy-
namic quantizer may effectively reflect the system dynamics and
the effect of packet dropout.
Notations: Rn denotes the set of n-dimension real vectors, N+

denotes the set of positive integers, and Pr is the probability
measure. E{·} is the mathematical expectation. ∥ · ∥ denotes the
Euclidean norm of a vector or the spectral norm of amatrix. λmin(·)
denotes theminimum eigenvalue of amatrix. I is used to represent
an identity matrix of appropriate dimensions. For a real symmetric
matrix, M > 0 (< 0) means that M is positive-definite (negative-
definite). Matrices, if not explicitly stated, are assumed to have
compatible dimensions.

2. Problem formulation and preliminaries results

2.1. Problem formulation

Consider the discrete-time system of the form:

x(k + 1) = Ax(k) + Bu(k) + Dw(k) (1)
z(k) = Ex(k) (2)

where x(k) ∈ Rn is the state, u(k) ∈ Rm is the control input,
z(k) ∈ Rl is the controlled output, andw(k) ∈ Rp is the exogenous
disturbance signal belonging to L2[0, ∞). A, B,D and E are known
real matrices.

As discussed in Introduction, the existence of the feedback
loop closed through a communication network will yield some
detrimental phenomena. Among them is the data packet dropout
due to the inevitable network congestion. In this work, it is
assumed that the packet dropout may happen in the channel from
the sensor to the controller and ismodelled as theBernoulli process
θ ∈ R with the probability distribution as

Pr{θ = 1} = θ̄ , Pr{θ = 0} = 1 − θ̄ (3)

where the known constant θ̄ represents the probability that any
data packet will be lost.

A general consideration for the system (1)–(2) is how to design
a controller to ensure its stability in the presence of packet
dropout. In Section 2.2 later, anH∞ controller is designed such that
the system (1)–(2) is stochastically stable with a prescribed H∞

disturbance attenuation level in the presence of packet dropout.
And then, in Section 3, we will further consider how to design
a dynamic quantizer such that the above H∞ controller can still
attain the same stability for case that the state signals are quantized
before being communicated to the controller.

2.2. The H∞ control with data packet loss

In this subsection, it is assumed that there only exists data
packet dropout, i.e., without taking quantization into considera-
tion. The following state compensator as in Niu and Ho (2010) is
utilized to estimate the lost state:

x̂(k) = (1 − θ)x(k) + θ x̂(k − 1). (4)

Thus, by means of the estimation from (4), the controller is con-
structed as:

u(k) = Kx̂(k) (5)

where the gain matrix K will be given later.
By substituting (4)–(5) into (1), we obtain:

x(k + 1) = [A + (1 − θ)BK ]x(k) + θBK x̂(k − 1) + Dw(k). (6)
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