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a b s t r a c t

Parameter estimation of polynomial phase signals (PPSs) based on the cubic phase
function (CPF) and its extensions cannot be performed by using the fast Fourier transform
(FT) algorithm. Therefore, in order to express the CPF by means of the FT, in this paper we
propose a scheme for the CPF evaluation based on non-uniform sampling. Calculation
complexity of the estimation procedure is significantly reduced, whereas the accuracy is
the same or better compared to the original algorithm.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The cubic phase function (CPF) has been proposed for the
estimation of third order polynomial phase signals (PPSs)
[1]. Several generalizations of the CPF to PPSs of higher
orders exist in the literature, including the recently pro-
posed hybrid CPF–high-order ambiguity function (CPF–HAF)
[2,3]. However, since the CPF-based techniques cannot be
evaluated using the fast Fourier transform (FFT), they are
characterized by larger computational complexity than the
FT-based techniques such as the HAF and product HAF
(PHAF) [4,5]. With the requirement of OðN2Þ complex multi-
plications and additions, where N is the number of signal
samples, the CPF can be unfeasible in real-time applications,
for example, in radar and sonar applications [3].

A procedure for parameter estimation of higher order
PPSs based on the non-uniform signal sampling has been
proposed in [6,7]. By sampling the signal at non-
equidistant time instants, the procedure lowers the non-
linearity of the estimator function, which, in turn,
improves its performance, signal to noise ratio (SNR)
threshold and mean squared error (MSE). In this paper,
we use a similar non-uniform sampling scheme to

transform the CPF in a form suitable for the FFT algorithm.
The modified CPF requires OðN log NÞ operations and has
lower MSE than the standard CPF. It can be generalized for
other CPF-based techniques. Here, we implement the
modified CPF in the evaluation of the CPF–HAF.

The rest of paper is organized as follows. In Section 2,
we present the signal model and overview some of the
most popular PPS estimators. The proposed method is
presented in Section 3. In this section, the performance
study is given as well. Numerical examples supporting the
theoretical analysis are given in Section 4 followed by the
conclusions in Section 5.

2. CPF and related estimators

Consider the following signal model:

xðnÞ ¼ sðnÞþνðnÞ ¼ A exp j ∑
P

i ¼ 0
aiðnΔÞi

 !
þνðnÞ; nA ½�N=2;N=2�;

ð1Þ

where νðnÞ is complex zero-mean white Gaussian noise
with variance s2 and s(n) is a P-th order PPS with the
amplitude A and phase parameters ai; i¼ 0;…; P. The
number of signal samples is Nþ1 and Δ is the sampling
rate. Here, N is even positive integer and Δ satisfies the
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Nyquist–Shannon sampling theorem. Our interest is to
estimate fA; a0;…; aPg from x(n).

The maximum likelihood (ML) estimation of para-
meters fA; a0;…; aPg of higher order PPSs is computation-
ally complex since it requires maximization of a
P-dimensional function [8]. Therefore, the phase differen-
tiation (PD)-based techniques are used to reduce the
search space [4,5,9]. The PD is performed recursively by
the auto-correlation function

PDK
xðnÞ½n; τ1; τ2;…; τK � ¼ PDK�1

xðnÞ ½nþτK ; τ1; τ2;…; τK�1�

�fPDK�1
xðnÞ ½n�τK ; τ1; τ2;…; τK�1�g

n

; PD0
xðnÞ½n� ¼ xðnÞ; ð2Þ

where K is the number of PDs, τ1; τ2;…; τK are the lag
parameters and PDK

xðnÞ½n; τ1; τ2;…; τK � is the PD operator
applied on x(n).

The highest order phase parameter aP can be estimated
from the HAF by performing ðP�1Þ PDs and periodogram
maximization:

âP ¼
arg max

ω
jHAFðωÞj

2P�1P!ΔP�1∏P�1
i ¼ 1τi

;

HAFðωÞ ¼∑
n
PDP�1

xðnÞ ½n; τ1;…; τP�1�expð� jωΔnÞ: ð3Þ

Once aP is estimated, lower order parameters and ampli-
tude can be obtained from the dechirped signal
xdðnÞ ¼ xðnÞexpð� jâPðnΔÞPÞ by repeating the procedure [4].

The PD-based estimation becomes less accurate as the
PPS order increases. Each PD generates additional inter-
ference terms caused by noise and additional cross-terms
in case of several signal components. Moreover, the
dechirping procedure causes the error propagation from
higher to lower order phase parameters. This effect
becomes more emphasized with larger P. The cross-
terms could be reduced using the product form of the
HAF (PHAF) [5], but the main problems associated with the
HAF still remain. Therefore, by reducing the number of
PDs, issues associated with the PD implementation are
also reduced. However, lower number of PDs increases the
computational complexity of estimation due to increased
dimensionality of the search space.

The CPF is introduced for the estimation of cubic phase
signals (P¼3) as [1]

CPFðn;ΩÞ ¼∑
m
xðnþmÞxðn�mÞexpð� jΩðmΔÞ2Þ: ð4Þ

In the absence of noise, the CPF peaks at the second order
phase derivative ΩðnÞ ¼ 2ð3a3nΔþa2Þ and two highest
order phase parameters can be estimated from (4) calcu-
lated at n¼0 and n¼ n1. The CPF requires lower number of
the PDs with respect to the HAF for cubic phase signals
and is correspondingly more accurate than the HAF.
The CPF is extended for the estimation of higher order
PPSs as [3]

CPF�HAFðn;ΩÞ ¼∑
m
PDP�3½nþm; τ1;…; τP�3�

PDP�3½n�m; τ1;…; τP�3�expð� jΩðmΔÞ2Þ: ð5Þ
This approach is referred as the CPF–HAF, and it uses
ðP�3Þ PDs to transform a P-th order PPS to a cubic phase
signal, whose parameters are in turn estimated by the CPF.

The main problem in the CPF evaluation is transforming
the underlying signal by quadratic phase matching
sequence ∑m½��expð� jΩðmΔÞ2Þ that cannot be evaluated
using the FFT. Therefore, the complexity of the CPF-based
estimation procedure performed over a search grid of size
O(N) is OðN2Þ, whereas the HAF-based procedure evaluated
using the FFT requires OðN log NÞ operations. This is the
reason for proposing the non-uniform sampled CPF in the
next section.

3. Non-uniform sampled CPF

The parameter estimation of higher order PPSs using a
non-uniform sampling scheme has been recently proposed
in [6]. Here, we apply the same scheme in the CPF
definition in order to enable its evaluation by the FFT
algorithms.

Maximization of the CPF function is usually performed
in two steps. In the first step, a coarse estimate is obtained
and that estimate is refined in the second step by search-
ing over the predefined grid around the coarse estimate.
The second step can be very computationally demanding.
Therefore, several refine search strategies have been pro-
posed for that purpose [10,11]. These strategies are able to
obtain very precise estimate by calculating the objective
function at several points only. However, these strategies
require the evaluation of the objective function by the FFT.
Therefore, the CPF evaluation using the FFT would addi-
tionally reduce the complexity of the CPF-based estima-
tion procedure.

In this paper, we propose to modify the CPF (4) by
substituting m with m¼

ffiffiffiffiffiffi
Ck

p
. In that case, the auto-

correlation contained in (4) has the following form:

x1ðkÞ ¼ xðnþ
ffiffiffiffiffiffi
Ck

p
Þxðn�

ffiffiffiffiffiffi
Ck

p
Þ¼ A2 expfjð6a3nΔ3Ck

þ2a2Δ2Ckþ2a3ðnΔÞ3þ2a2ðnΔÞ2þa1nΔþ2a0Þg

þνxðnÞ ð6Þ

and the corresponding CPF can be written as

NUCPFxðn;ΩÞ ¼∑
k
x1ðkÞexpð� jΩCΔ2kÞ ¼ FTfx1ðkÞg: ð7Þ

Relationship (7) gives us the CPF representation by means
of the FT. Function (7) will be referred to as the non-
uniform sampled CPF (NU-CPF). Note that the NU-CPF
peaks at ΩðnÞ ¼ 2ð3a3nΔþa2Þ, same as the CPF. In order
to maintain the same nature of noise after resampling and
to achieve high resampling factor, C has to be chosen as
C �N=2�jnj [6].

The NU-CPF requires the evaluation of the signal x(n) at
non-integer time instants, i.e., nþ

ffiffiffiffiffiffi
Ck

p
and n�

ffiffiffiffiffiffi
Ck

p
.

Unknown signal values can be obtained using the inter-
polation procedure which can be described by two steps
[6, Section III C.]:

(a) interpolate x(n) by a factor 2 or 4 using some standard
interpolation technique to obtain xi(n);

(b) calculate unknown signal value at arbitrary time
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