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a b s t r a c t

An interval observer for Linear Time-Varying (LTV) systems is proposed in this paper. Usually, the design
of such observers is based on monotone systems theory. Monotone properties are hard to satisfy in
many situations. To overcome this issue, in a recent work, it has been shown that under some restrictive
conditions, the cooperativity of an LTV system can be ensured by a static linear transformation of
coordinates. However, a constructive method for the construction of the transformation matrix and the
observer gain, making the observation error dynamics positive and stable, is still missing and remains
an open problem. In this paper, a constructive approach to obtain a time-varying change of coordinates,
ensuring the cooperativity of the observer error in the new coordinates, is provided. The efficiency of the
proposed approach is shown through computer simulations.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The problem of unmeasurable system state estimation is chal-
lenging and its solution is required in many engineering appli-
cations. The problem of state estimation of systems has many
solutions and has been widely investigated in the literature. Pop-
ular and well-known observers are mainly based on, for instance,
Kalman/H∞ filtering (Grip, Saberi, & Johansen, 2011; Särkkä, 2007)
or Luenberger structure (Barmish & Galimidi, 1986). In situations
where external disturbances and noises are assumed bounded
without any additional assumption, interval observers can be an
appealing alternative approach. Under some assumptions, these
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observers allow the designer to cope with uncertainties and eval-
uate the set of admissible values of the state vector, at any time
instant.

Several approaches exist for designing interval observers
(Bernard & Gouzé, 2004; Jaulin, 2002; Moisan, Bernard, & Gouzé,
2009), for linear systems (Ait Rami, Cheng, & de Prada, 2008;
Bernard & Mazenc, 2010; Combastel & Raka, 2011) or when the
system exhibits nonlinear behavior (Moisan et al., 2009; Raïssi, Efi-
mov, & Zolghadri, 2012). The design of such observers is based on
the monotone systems theory (Ait Rami, Tadeo, & Helmke, 2011;
Bernard & Gouzé, 2004; Moisan et al., 2009). This approach has
been recently extended to some nonlinear systems using LPV rep-
resentations with known minorant and majorant matrices (Raïssi,
Videau, & Zolghadri, 2010). One of the most restrictive assump-
tions for the interval observer design is the positivity (Smith, 1995)
of the interval estimation error dynamics. It was relaxed for LTI
systems in Bernard and Mazenc (2010), Combastel (2013), Com-
bastel and Raka (2011) and Mazenc and Bernard (2011) by using a
time-varying change of coordinates. Furthermore, a time-invariant
transformation is proposed in Raïssi et al. (2012) to design a closed-
loop observer for LTI systems where the transition matrix and
the observer gain verify a Sylvester equation. This technique has
also been extended to a class of nonlinear systems based on exact
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linearizations. Time-varying systems have been investigated in Efi-
mov, Raïssi, Chebotarev, and Zolghadri (2013) where the case of
time-varying transformation for periodic systems is considered
and in Efimov, Raïssi, Chebotarev, and Zolghadri (2012) where the
observer gain has to ensure stability of the observation error, and
a static linear transformation of coordinates is proposed that pro-
vides the positivity of the observation error. The main limitation
of the technique proposed in Efimov et al. (2013) is that the matrix
D(t) = A(t)−Lobs(t)C(t), where Lobs(t) is the observer gain, should
belong to a thin domainwhose size is proportional to the inverse of
the system dimension. Furthermore, no constructive methodology
has been provided in Efimov et al. (2013) to prove the existence
and to design a similarity transformation making D(t) Metzler in
the new coordinates.

The goal of this paper is to design a stable interval observer for
LTV systems overcoming the previous limitations. The proposed
interval observer is based on a time-varying change of coordinates
which has been proposed in earlier works (Zhu & Johnson, 1989a,b,
1991). It should be noted that the proposed methodology does
not require any additional assumption with respect to classical
observers.

The paper is organized as follows. In Section 2, the problem is
formulated and a previous result of an interval observer design for
LTV systems is recalled. Section 3 is devoted to a procedure mak-
ing the transformation of any time-varying matrix into a Metzler
matrix. The result given in Section 3 is then used to design an inter-
val observer for LTV systems in Section 4. Section 5 shows the effi-
ciency of the interval observer through numerical simulations. To
emphasize the improvement, a comparison with previous results
reported in Efimov et al. (2013) and Thabet, Raïssi, Combastel, and
Zolghadri (2013) is given.

2. Notations and problem statement

A square matrix A = (Aij) ∈ Rn×m is said to be Metzler if Aij ≥

0, ∀i ≠ j. For two vectors x1, x2 ∈ Rn or matrices A1, A2 ∈ Rn×n,
the relations x1 ≤ x2 and A1 ≤ A2 are understood elementwise.
The relation P ≺ 0 (P ≻ 0) means that the matrix P ∈ Rn×n is
negative (positive) definite.

Lemma 1 (Smith, 1995). Given a non-autonomous system described
by ẋ(t) = Ax(t) + B(t) where A is a Metzler matrix and B(t) ≥ 0.
Then, x(t) ≥ 0, ∀t > 0 provided that x(0) ≥ 0.

Note that the result of Lemma 1 is also valid for time-varying
systems (i.e. A(t) is time-varying). Now, consider an LTV system
described by:

ẋ(t) = A(t)x(t) + f (t)
y(t) = C(t)x(t) + ϕ(t)
x(0) ∈ [x(0), x(0)]

∀t, f (t) ∈ [f (t), f (t)] ⊂ Rn, ϕ(t) ∈ [ϕ(t), ϕ(t)] ⊂ Rp

(1)

where x(t) ∈ Rn, f (t) ∈ Rn, y(t) ∈ Rp and ϕ(t) ∈ Rp are respec-
tively the state vector, an unknown but bounded input, the output
vector and a bounded noise. The goal is to design an interval ob-
server for systems described by (1).

Assumption 1. There exist bounded matrix functions Lobs : R →

Rn×p, M : R+ → Rn×n, M(·) = M(·)T ≻ 0 such that for all t ≥ 0,
Ṁ(t) + D(t)TM(t) + M(t)D(t) ≺ 0,
D(t) = A(t) − Lobs(t)C(t).

Assumption 1 is a conventional requirement for LTV systems (Am-
ato, Pironti, & Scala, 1996). Under this assumption, the observer

gain Lobs(t) and the matrix function M(t) are such that the sta-
bility of the LTV system ẋ(t) = D(t)x(t) can be proven by taking
V (t) = x(t)TM(t)x(t) as Lyapunov function. It determines the out-
put stabilization conditions of the system dynamics (1) which can
be rewritten as:
ẋ(t) = D(t)x(t) + φ̃(t)
y(t) = C(t)x(t) + ϕ(t) (2)

where φ̃(t) = f (t) − Lobs(t)ϕ(t) + Lobs(t)y(t). Linear Parameter-
Varying or polytopic system results (Anstett, Millrioux, & Bloch,
2009; Bara, Daafouz, Ragot, & Kartz, 2000) can be used to compute
an observer gain Lobs(t) satisfying Assumption 1. In addition, if the
matrix D(t) = A(t) − Lobs(t)C(t) is Metzler, an interval observer
for the LTV system (2) can be easily designed. Nevertheless, the
Metzler condition is not usually satisfied without applying some
model transformations. This problem has been investigated in re-
cent work (Efimov et al., 2013) where the goal was to find a time-
invariant change of coordinates and an observer gain in order to
obtain a positive observation error at each time. The design of the
gain and the existence of the static transition matrix ensuring the
Metzler property remains a difficult task. Assumption 2 (Assump-
tion 4 in Efimov et al., 2013) was used to design interval observers.

Assumption 2. Let D(t) ∈ Ξ for all t ≥ 0, Ξ = {D ∈ Rn×n
:

Da − ∆ ≤ D ≤ Da + ∆} for some DT
a = Da ∈ Rn×n and

∆ ∈ Rn×n
+ . Let for some constant µ > n∥∆∥max (where ∥∆∥max =

maxi=1,n,j=1,n |∆i,j| the elementwise maximum norm) and a diag-
onal matrix Υ ∈ Rn×n the Metzler matrix R = µEn − Υ , where
En ∈ Rn×n denotes the matrix with all elements equal to 1, have
the same eigenvalues as the matrix Da.

Note that the case of ∆ = 0 corresponds to LTI systems for which
several solutions exist (Combastel, 2013; Mazenc & Bernard, 2011;
Raïssi et al., 2012). Under Assumption 2, (Efimov et al., 2013) shows
that there is an orthogonal matrix S ∈ Rn×n such that the matrices
STD(t)S are Metzler for all D(t) ∈ Ξ . By introducing the new state
variable z = ST x, (1) can be rewritten in the new coordinates:

ż = STA(t)Sz + φ(t),

where φ(t) = ST f (t). The proposed interval observer for the
system (1) in the new coordinates is:
ż = STD(t)Sz + φ(t) + Ψ (t) + Kobs(t)y

ż = STD(t)Sz + φ(t) + Ψ (t) + Kobs(t)y
(3)

where φ(t) = (S+)T f (t) − (S−)T f (t), φ(t) = (S+)T f (t) − (S−)T

f (t), Kobs = ST Lobs(t), Ψ (t) = K−

obs(t)ϕ − K+

obs(t)ϕ, Ψ (t) =

K−

obs(t)ϕ − K+

obs(t)ϕ. Given a matrix N ∈ Rm×n, N+ and N− are
defined as: N+

= max{0,N},N−
= max{0, −N}. Then, S+, S−,

K+

obs(t) and K−

obs(t) can be deduced. In the original coordinates, ap-
plying Lemma 2 given below to the relation x = Sz, the bounds of
the state vector x are given by:

x = S+z − S−z, x = S+z − S−z. (4)

Lemma 2 (Efimov et al., 2013). Let x ∈ Rn be a vector variable,
x ≤ x ≤ x for some x, x ∈ Rn, and S ∈ Rm×n be a matrix, then

S+x − S−x ≤ Sx ≤ S+x − S−x. (5)

According toAssumption2, themain limitation of the technique
proposed in Efimov et al. (2013) is that the matrix D(t) should
belong to a thin domain whose size is proportional to the inverse
of the system dimension (∥∆∥max <

µ

n ). Then, the bigger the
system dimension is, the thinner the domain enclosing D(t) must
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