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a b s t r a c t

This paper is concerned with the design of delta–sigma modulators via the generalized Kalman–
Yakubovich–Popov lemma. The shaped noise transfer function (NTF) is assumed to have infinite impulse
response, and the optimization objective is minimizing the maximum magnitude of the NTF over the
signal frequency band. By virtue of the GKYP lemma, the optimization of an NTF is converted into
a minimization problem subject to quadratic matrix inequalities, and then an iterative algorithm is
proposed to solve this alternative minimization problem. Each iteration of the algorithm contains linear
matrix inequality constraints only and can be effectively solved by the existing numerical software
packages. Moreover, specifications on the NTF zeros are also integrated in the design method. A design
example demonstrates that the proposed design method has an advantage over the benchmark one in
improving the signal-to-noise ratio.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Analog-to-digital (A/D) and digital-to-analog (D/A) data con-
verters are the indispensable part of most electronic systems.
As the interface between the digital signal world and the real
analog world, they determine whether and how much the con-
version can correctly keep the important information of signals,
meanwhile suppressing undesirable noises. To improve the res-
olution of A/D converters, it has been long recognized that the
framework of delta–sigma (1Σ)modulators is an effective scheme
(Oppenheim, Schafer, & Buck, 1998). Even under a coarse quan-
tizer, the1Σ modulator scheme combinedwith the oversampling
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technique can provide a very high resolution (Aziz, Sorensen, & der
Spiegel, 1996). Especially, with the increasing requirement on con-
verters of high quality, research on 1Σ modulators has attracted
considerable attention during the past decades, and applications
can also be found inmany areas related to digital signal processing
(see the related literature in Part I of Table 1).

The central task of designing 1Σ modulators is noise shaping
(Schreier & Temes, 2005). By virtue of optimization theory and
the computer-aided design technique, some design methods have
been developed for noise transfer function (NTF) shaping (see
Part II of Table 1). A typical off-the-shelf tool is The Delta–Sigma
Toolbox (Schreier, 2009), for which, the objective of NTF shaping
is to minimize the integral of the squared magnitude of the NTF
over the signal frequency band. Signal processing and systems
theory are two areas tightly related to each other (Li, Jing, & Karimi,
2014; Yang, Liu, Shi, Thomas, & Basin, 2014). From the perspective
of systems theory, 1Σ modulators can be regarded as a special
class of systems, and thus many results in control and systems
theory are potentially beneficial for 1Σ modulator design. For
instance, the Bounded Real lemma exposes that the H∞ norm of a
transfer function can be characterized by a linearmatrix inequality
(LMI) (Boyd, El Ghaoui, Feron, & Balakrishnan, 1994), which has
been employed for describing the magnitude specification of
the NTF in terms of a convex constraint (Nagahara, Wada, &
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Table 1
A brief summary of the related literature.

Part I: applications

Wireless communication Schoofs et al. (2007)
Control systems Azuma and Sugie (2008a,b)
Audio amplifiers Dooper and Berkhout (2012)
Sensing and measuring Acero et al. (2007)

Part II: design methods

Average gain optimization Callegari and Bizzarri (2013) and
Schreier (2009)

Peak gain optimization Nagahara et al. (2006), Osqui et al.
(2007) and Nagahara and
Yamamoto (2012)

Advanced control theory Quevedo and Goodwin (2005) and
Yu (2006)

Others Azuma and Sugie (2008a,b)

Yamamoto, 2006). Another promising result recently developed
in control theory is the generalized Kalman–Yakubovich–Popov
(GKYP) lemma (Iwasaki & Hara, 2005), based on which, some new
developments on 1Σ modulator design also have been reported
in the literature (Nagahara et al., 2006; Osqui, Roozbehani, &
Megretski, 2007). In Osqui et al. (2007), an upper bound of the
low frequency average power of the reconstruction error was
found, and a numerical method in light of the GKYP lemma was
then proposed for approximately minimizing the upper bound.
However, the derived upper bound and the design algorithm in
Osqui et al. (2007) were only applicable for binary, low-pass 1Σ

modulators; moreover, some optional parameters were chosen
empirically in the design algorithm there. Via the GKYP lemma, a
recent paper (Nagahara & Yamamoto, 2012) proposed a min–max
approach to NTF optimization. This approachminimizes theworst-
case gain of the NTF over the signal frequency band and is shown
to be able to improve the overall SNR of 1Σ modulators. Due to
the advantage of the GKYP lemma, the approach in Nagahara and
Yamamoto (2012) avoids the selection of a weighting function that
is used in Nagahara et al. (2006).

The method proposed in Nagahara and Yamamoto (2012) can
design finite impulse response (FIR) NTF only, while for NTFs with
infinite impulse response (IIR), it is inapplicable. This limitation
of the method in Nagahara and Yamamoto (2012) motivates the
research in this paper, that is, designing IIR NTFs by making use
of the GKYP lemma. Compared with the results in Nagahara and
Yamamoto (2012), the current investigation is not trivial. On one
hand, an IIRNTFwith amuch lower order can achieve a comparable
performance as an FIR one. In fact, FIR NTFs are only a special case
of IIR NTFs. On the other hand, the approach to shaping FIR NTFs
in Nagahara and Yamamoto (2012) cannot be extended to the IIR
case, and solving or testing the conditions derived for the IIR case
is much more involved than that for the FIR case.

In this paper, we focus on IIR NTF shaping for 1Σ modulators.
To this end, the min–max strategy in Nagahara and Yamamoto
(2012) is employed as the optimizing objective. A new condition
is first derived for characterizing the desired frequency-domain
shape of an NTF. Since this condition, in the quadratic matrix
inequality (QMI) form, cannot be directly solved,we further handle
it by an iterative algorithm. In each step, it only needs to test several
LMI constraints, which can be completed by the existing numerical
software packages (Gahinet, Nemirovskii, Laub, & Chilali, 1995).
We also discuss how to choose the empirical feasible initialization
condition and incorporate the specifications on the NTF zeros in
the same framework. In the presented illustrative design example,
we compare the proposed1Σ modulator with the benchmark one
designed by The Delta–Sigma Toolbox (Schreier, 2009), showing
that the proposed design method can improve both of the worst-
case SNR and the average SNR. Some preliminary results in this
paper can be found in Li, Gao, and Yu (2013).

Fig. 1. General structure of a 1Σ modulator with loop filter [L1(s), L2(s)], and
quantizer Q .

Notation: The superscripts ‘‘−1’’, ‘‘T’’ and ‘‘∗’’ stand for inverse,
transpose, and conjugate transpose of a matrix, respectively. The
notation P > 0 means that matrix P is positive definite. I denotes
an identity matrix with appropriate dimension.

2. Main results

2.1. 1Σ modulator and NTF shaping

Detailed description on 1Σ modulators can be found in
Schreier and Temes (2005), and some related basic concepts are
briefly introduced here so as to bring out the problem. Consider
a 1Σ modulator shown in Fig. 1, where u(k) is a discrete-
time scalar-valued input signal, [L1(z), L2(z)] is the linear loop
filter, and Q denotes a general quantizer. Note that n(k) =
Q [y(k)] − y(k) and v(k) = n(k) + y(k) = Q [y(k)]. Hence,
y(k) and v(k) are the discrete-time output signals before and after
quantization, respectively, while n(k) is the quantization error. The
basic function of a 1Σ modulator is to convert u(k) (e.g., analog
signal) into v(k) (e.g., digital signal) for other uses.

In the linear part, quantized outputv(k) canbedenoted in terms
of inputs u(k) and n(k), that is,

V (z) = TSTF(z)U(z)+ TNTF(z)N(z)

where TSTF(z) and TNTF(z) are referred to as the signal transfer
function (STF) and the NTF, and V (z),U(z) and N(z) are the z-
domain representation of signals v(k), u(k) and n(k), respectively.
Corresponding to Fig. 1, it is easy to obtain that

TSTF(z) =
L1(z)

1− L2(z)
, TNTF(z) =

1
1− L2(z)

. (1)

Hence, loop filters L1(z) and L2(z) can be parameterized by
STF TSTF(z) and NTF TNTF(z). As is known, noise shaping, or
more exactly, NTF shaping, is the central task of designing 1Σ

modulators (Schreier & Temes, 2005). An appropriate NTF should
satisfy the following three basic requirements.

Realizability: To guarantee physical realizability of the modula-
tor, at least one clock-period delay must be contained in the loop
formed by filter L2(z) and quantizer Q ; otherwise, y(k) in one sam-
ple would pass through Q and L2(z) instantly, making y(k) con-
tinuously vary during the same sampling period. In view of Fig. 1,
this delay should be in L2(z), implying that L2(z) must be strictly
proper. Mathematically, this means L2(∞) = 0. Recasting this re-
quirement to TNTF(z), one sees that TNTF(z) must satisfy

TNTF(∞) =
1

1− L2(∞)
= 1 (2)

which is an elementary restriction when designing TNTF(z). For
more detailed interpretation on this restriction, please refer to
Schreier and Temes (2005, pp. 95–97), and Nagahara and Ya-
mamoto (2012) also provides an interpretation from a well-
posedness perspective.
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