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a b s t r a c t

Recently, it has been found that the redundant blocks problem existed in many fields, such
as face recognition and motion segmentation. In this paper, taking the redundant blocks
into account, we propose some greedy type algorithms that exploit the subspace
information of the redundant blocks to solve the redundant blocks problem. The exact
recovery conditions of these algorithms are presented via block restricted isometry
property (RIP). Numerical experiments demonstrate the validity of these algorithms in
solving the problems with both non-redundant and redundant blocks.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

The sparse signal representation is an important method
in signal processing. Its applications include various fields,
such as compressed sensing/sampling, computer vision, image
reconstruction, blind source separation and so on [1–6].
Typically, for a given signal y, the representation is modeled
as an underdetermined equation

y¼Ax; ð1Þ

where AARm�N denotes a dictionary with moN. The sparse
representation model (1) is considered as the one with single
measurement vector (SMV). Usually, sparsity in some sense is
used as the constraint of the solution to guarantee the
uniqueness.

To solve Eq. (1), greedy algorithms are usually used due
to their low complexity and simple interpretation in
geometry. Theoretically, Tropp [7] presented some condi-
tions to guarantee that orthogonal matching pursuit
(OMP) can exactly recover sparse vector x from (1), using
mutual coherence μ¼maxi;jj〈Ai;Aj〉j, where Ai denotes the
ith column of the dictionary A. Another useful tool for the
theoretical analysis is restricted isometry property (RIP). A

matrix A satisfies the RIP of order k if there exists a
constant δAð0;1Þ such that

ð1�δÞ‖x‖22r‖Ax‖22rð1þδÞ‖x‖22 ð2Þ

for any k-sparse vector x that has at most k non-zero ele-
ments. In particular, the minimum of all the constants δ satis-
fying (2) is defined as restricted isometry constant (RIC) δk.

Note that there exist matrices satisfying RIP condition
but not the mutual coherence condition [8]. It is a
motivation to search the exact recovery condition of
OMP using RIP. Employing RIP, a bound was given by [8]
to guarantee the exact recovery of OMP. And, it was
relaxed by [9,10].

Recently, block-sparse representation model have attr-
acted significant attention. In this model, the vector x in (1)
exhibits additional structure in the form of the non-zero
coefficient occurring in blocks (or clusters). In practice, the
block-sparse structure can be found in many fields, such as
reconstruction of multi-band signals [11], and face recogni-
tion [12]. Theoretically, the exact recovery of unknown
vectors with block structure was considered in [13–16].
Meanwhile, block OMP (BOMP) algorithm was presented
and analyzed based on block-coherence in [14].

The works mentioned above discussed the dictionaries
with non-redundant blocks. That is, the vectors in any one
block are linearly independent. Contrarily, a block is called
a redundant block if it consists of linearly dependent
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vectors. The dictionary with redundant blocks may be
found in many fields, such as signal/image processing,
machine learning, and computer vision. Sometimes, one
block in the dictionary is redundant due to the fact that
the number of the data in this block exceeds the dimen-
sion of the underlying subspace. Elhamifar and Vidal [17]
considered the redundant blocks by convex optimization
to obtain the uniqueness condition of the block-sparse
representation for a given signal.

Besides the applications, the basic theory of the redun-
dant case, such as the exact recovery condition of a certain
algorithm, has been gained much attention. It is found that
some theory established for the non-redundant case,
cannot be used in this redundant case directly. Since the
computational complexity is considered, the greedy type
algorithms are used in this paper to solve the problem
with redundant blocks.

The multiple measurement vectors (MMV) model arises in
various applications including estimation of sparse brain
regression [18], multivariate regression [19], and direction of
arrival (DOA) estimation [20]. Since the correlated information
across the measurements is employed, MMV-based methods
have high efficiency and good performance [21–23]. For video
processing, Majumdar and Ward [24] presented an MMV-
based method. However, the block structure of the dictionary
was not considered in their work.

The main contributions of this paper are summarized
as follows. First, consider the structure of redundant
blocks, the BOMP algorithm is extended to an algorithm
for redundant blocks. We term this algorithm BOMPR. The
exact recovery conditions of BOMP and BOMPR are pre-
sented based on block RIP. Second, by MMV, an algorithm
is proposed to solve problems in practice with redundant
blocks. It is referred to as BMMVR. The exact recovery
condition of BMMVR is presented too. The BMMVR algo-
rithm processes multiple samples simultaneously, and
takes the redundant blocks into account as well. The
experiments of the face recognition are made to show
that BMMVR can obtain high classification rate.

The rest of the paper is organized as follows. In Section 2,
we introduce BOMPR and provide the exact recovery con-
ditions of BOMP and BOMPR. In Section 3, we present
BMMVR and discuss the exact recovery condition of it based
on block RIP. In Section 4, several experiments are made to
illustrate the validity of BOMPR and BMMVR. Finally, the
conclusion is given in Section 5.

The notations used in this paper are listed here. We denote
vectors by boldface lowercase letters, e.g., x, and matrices as
boldface uppercase letters, e.g., A. By xi and x½i�, we denote the
ith entry and the ith block of x, respectively. Symbol A½i�
denotes the ith block of A. Ai denotes the ith column of A. AT

and A† denote the transpose of A and Moose–Penrose
pseudo-inverse of A, respectively. Ar- means the rth row of
A. Am�N is equivalent to AARm�N . jΓj designates the cardin-
ality of a finite set Γ. Si is the subspace spanned by the
columns of the block A½i�. The standard Euclidean norm is
‖x‖22 ¼ 〈x; x〉¼∑ijxij2. The Frobenius norm of A is ‖A‖2F ¼
∑i‖Ai‖22. The spectral norm of A is denoted by ρðAÞ ¼
λ1=2maxðATAÞ, where λmaxðBÞ is the largest eigenvalue of the
positive-semidefinite matrix B. Im is the m�m identity

matrix. We write AΓ for the column submatrix of A whose
indices are listed in the set Γ.

2. BOMPR: the extension of BOMP

In this section, BOMP is extended to BOMPR that
concerns the dictionaries with redundant blocks. Using
block RIP, the exact recovery conditions of BOMP and
BOMPR are given theoretically.

2.1. Preliminary of block-sparsity

For a dictionary AARm�N with moN, the underdeter-
mined equation (1) is considered here with a block
structure of x.

In order to emphasize the block structure, the system
(1) is rewritten as

y¼ AxB; ð3Þ
where the subscript B denotes the vector with the block
structure. To define block-sparsity, xB is viewed as a
concatenation of blocks xB½i�ARdi , iAΩ≔f1;2;…;Mg,
xB ¼ ½xT

B½1� xT
B½2�…xT

B½M��T : ð4Þ
We also rewrite A as a concatenation of column-blocks

A½i� of size m� di, iAΩ,

A¼ ½A½1� A½2�…A½M��: ð5Þ

Definition 1 (Eldar and Mishali [13]). A vector xBARN is
called block K-sparse over I ¼ fd1;…; dMg if xB½i� is non-
zero for at most K indices i where N¼∑M

i ¼ 1di.
The support of xB is defined as suppðxBÞ ¼ fijxB½i�a

0di�1g. Let Γ ¼ suppðxBÞ. Obviously, we have jΓj ¼ K and
ΓDΩ.
Next, to discuss the basic theory, block RIP is employed.

Definition 2 (Eldar and Mishali [13]). The dictionary A has
block RIP over I ¼ fd1;…; dMg with parameter δI A ð0;1Þ if
for every hBARN that is block K-sparse it holds that

ð1�δI Þ‖hB‖22r‖AhB‖22r ð1þδI Þ‖hB‖22: ð6Þ

The minimum of all constants δI satisfying (6) is defined
as the block-RIP constant δIK .

Remark 1. Note that if matrix A satisfies the block RIP
condition (6) with δIK Að0;1Þ, the columns of A½i� are
linearly independent for all i. Otherwise, there exists a
block 1-sparse hBa0 such that ‖AhB‖2 ¼ 0. It is obviously
a contradiction.
Analogous to [25], we give a lemma via the block RIP

condition.

Lemma 1. For finite sets Γ′ and Γ″, let suppðx̂BÞ ¼ Γ′ and
suppðxBÞ ¼ Γ″. Here, Γ′ \ Γ″¼∅, jΓ′jrK1, and jΓ″jrK2. If
A satisfies the block RIP condition (6) with δIðK1 þK2ÞAð0;1Þ,
then we have

j〈Ax̂B;AxB〉jrδIðK1 þK2Þ‖x̂B‖2‖xB‖2: ð7Þ
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