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a b s t r a c t

Inspired by the neuro-scientific problemof predicting brain dynamics fromelectroencephalography (EEG)
measurements of the brain’s electrical activity, this paper presents limitations on the observability of
networked oscillators sensed with quantised measurements. The problem of predicting highly complex
brain dynamics sensed with relatively limited amounts of measurement is abstracted to a study of
observability in a network of oscillators. It is argued that a low-dimensional quantised measurement is
in fact, by itself, an exceptionally poor observer for a large-scale oscillator network, even for the case of a
completely connected graph. The main rational is based on (i) an information-theoretic argument based
on ideas of entropy inmeasure preservingmaps, (ii) a linear deterministic observability argument, and (iii)
a linear stochastic approach using Kalman filtering. For prediction of brain network activity, the findings
indicate that the classic EEG signal is just not precise enough to be able to provide reliable prediction and
tracking in a clinical setting in view of the complexity of underlying neural dynamics.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Observability issues in networked oscillators have implications
for tracking and control in a wide range of distributed systems
that exhibit self-organising behaviour through synchronisation,
from modern telecommunications (Prehofer & Bettstetter, 2005)
to future power systems (Butler, 2007; Rohden, Sorge, Timme,
& Witthaut, 2012). Coupled oscillatory networks are particularly
prevalent in biological systems where there is increasing interest
in tracking and predicting dynamics for applications in medical
bionics.

Our particular motivational interest is the human brain, an
oscillatory system with an estimated 86G neuron cells (Azevedo
et al., 2009) networked with 1P synaptic connections.2 EEG
recordings of the brain’s electrical activity typically provide our
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output signal from which to observe the underlying activity.
Observability of the activity of neurons in the brain system
from EEG measurements is essential for advancement of medical
treatment through systems control in a range of neural conditions
including epilepsy, Parkinson’s disease and depression. Strong
observability is also necessary for prediction in neurology, for
example of epileptic episodes or to determine which patient are
likely to respond well to classes of pharmaceutical drugs.

Current network observability analyses typically seek to exploit
redundancies in the connection pathways between network nodes
to determine the minimum number of sensor measurements
required such that all nodes are either directly or indirectly
reachable. Early work includes finding observable islands (or sub-
networks) when the network as a whole is unobservable and
further determining where to place additional measurements to
reach network areas beyond these islands (Monticelli & Wu,
1985; Wu & Monticelli, 1985). This early work is iterative in
nature and therefore computationally intractable for large-scale
networks. Recent work by Liu et al. in network observability,
using graphical approaches to find the minimum sensor set, does
however cater for large-scale networks (Liu, Slotine, & Barabási,
2013). These methods all rely on exploiting topological clustering.
By contrast, the approach in this paper considers a network with
fully-connected graph, where clustering is unavailable.

Liu et al. also highlight interest in the applicability of their
methods to coupled oscillator systems (Liu et al., 2013); a similar
question was recently considered, in the small network case,
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for synchronous neuronally-inspired networks (Whalen, Brennan,
Sauer, & Schiff, 2012). In this case observability was found to be
quite limited and heavily influenced by topology and symmetry.
In this paper we consider observability in large scale coupled
oscillator systems.

Liu and Bitmead consider network observability in non-
linear stochastic networks, defining observability in information
theoretic terms by comparing the entropy of the state with the
conditional entropy of the state given the measurement (Liu &
Bitmead, 2011). Although stochastic systems are not considered
in this paper, similar ideas of linking observability to entropy
are applied here (although it is entropy of the state map that
is considered in this work rather than a condition related to
the mutual information between state and measurement signal).
In both cases, however, positive entropy effectively allows for
a reduction of state uncertainty with an increasing sequence of
measurements. As articulated by Liu and Bitmead, the power in an
entropy definition of observability is that it can apply to both linear
and non-linear systems.

The Takens–Aeyels embedding theorem (Aeyels, 1981; Takens,
1981) states that observability is a generic property in non-linear
(autonomous) systems. Moreover, a state may be reconstructed
from the measurement vectors for sufficiently large measurement
time series. This state can then be used to infer dynamics. This
remarkable theorem of delay reconstruction provides an elegant
and resourceful tool, but, it is limited to autonomous, stationary,
noise-free systems (Kantz & Schreiber, 2004, Chapter 3). Despite
such limitations, delay reconstruction is widely applied to real-
world systems, for example to the brain (Iasemidis, Sackellares,
Zaveri, & Williams, 1990; Lehnertz & Elger, 1998; Le Van Quyen
et al., 2001) where dynamics are certainly not noise-free or
indeed autonomous and can only be considered quasi-stationary
on short time scales (∼10 s) (Niedermeyer & Lopes Da Silva,
2005). How realistic is the Takens–Aeyels embedding theorem
here, particularly in light of such a large-scale system as the brain?

In this paper the question of what one can observe from
an EEG record is reduced to the generalised question of how
quantisation of an output, from a large-scale system, effects the
observability. This effect of quantisation has implications beyond
the reconstruction of brain dynamics for the observability of any
practical system.

A ‘‘synthetic’’ brain-like situation is presented in Section 2, fully
under our control, within which the limits of a brain-like EEG
recording can be investigated. While Section 3 demonstrates that
we have a theoretically observable system, practical considera-
tions reveal a severe lack of observability using arguments from
(i) information-theoretic ideas of entropy in measure preserving
maps in Section 4.1, (ii) linear deterministic observability in Sec-
tion 4.2 and (iii) linear stochastic Kalman filtering in Section 4.3.
The implications for prediction and tracking of brain dynamics are
discussed in Section 5 followed by concluding comments in Sec-
tion 6.

2. Abstraction to networked clocks

A generic and scalable coupled oscillator model (with origins
in the 1985 work of Wright, Kydd, & Lees, 1985) is proposed
as a synthetic brain. It is important to highlight that this is not
a model which can tell us anything about the nature of brain
function, but this approach is suited, however, to the specific task
of investigating what underlying information one may expect to
recover from the EEG signal.

The model abstracts the problem to the study of a simple net-
work of second order oscillators with linear interconnection. Such
a model neglects the complexities of biologically realistic neuron-
dynamics and instead formulates the observability problem as a

generic network of oscillators where an EEG-like measurement is
made. The model is scalable in the sense that the size and location
of the recording electrode and the domain of tissue that is mea-
sured are immaterial—it can equally represent the measurement
of a localised region of brain tissue from an implanted microelec-
trode to measurement of a large area of brain tissue from the scalp
surface.

EEG recordings are modelled as the output (defined as a linear
map from the state) of a systemof networked oscillators. The use of
linear observation is entirely biologically appropriate (Varsavsky,
Mareels, & Cook, 2010, Chapter 2). Each individual oscillator is
modelled as a pendulum clock,

ẍi + ω2
i sin(xi) = Fi, i = 1 . . .N, (1)

where xi is angular position, ωi is the natural frequency of
oscillation and Fi is the forcing term of the ith pendulum defined as
Fi = γi sin(ωin,it) +


j αij(xj − xi). Fi consists of an external input

term, γi sin(ωin,it), plus a feedback term that couples the position
state from other pendula,


j αij(xj − xi). ωin,i is the frequency of

external input and γi denotes the strength of external input to
oscillator i. αij denotes the coupling strength between oscillators i
and j. Examples of external inputs are sensory input to a large brain
network, input fromdistant regions of the brain that are external to
a localised model and the therapeutic electrical brain stimulation
discussed in Freestone et al. (2011) and Nelson et al. (2011).

Consider the linearisation of (1) for simplicity,

ẍi + ω2
i xi = Fi, i = 1 . . .N, (2)

where these linear clocks can equally be combined to form a clock
network through coupling.

The brain network exhibits small world characteristics with
locally dense clusters and a hop number of less than 3 (Achard,
Salvador, Whitcher, Suckling, & Bullmore, 2006; Crick & Jones,
1993). For this work a simple fully-connected graph is assumed,
with strong local connection and weaker long range connection,
as illustrated in Fig. 1. Additionally, it is assumed that all
model parameters are known (a huge simplification from the
true brain/EEG observability problem). It is chosen to restrict
the model to pure or marginally stable oscillators rather than
include a damping term. This is biologically justifiable given the
alternatives to marginal stability are either (i) damped oscillation
or (ii) unstable oscillation. For the electro-magnetic activity
of the brain (i) and (ii) would indicate pathological states of
activity, for example decay of neural activity until brain death
and increasing neural excitability until an epileptic seizure state
respectively. Therefore, operating the coupled oscillator model on
the boundary of stability is bio-realistic for normal brain function.
While certainly the brain will naturally deviate into both slightly
underdamped and slightly damped modes of oscillation, it is
envisioned that the natural balance of excitability in the brain will
constrain this damped and underdamped activity to dynamics that
lie near to the critically damped boundary.

A coupled clock network ofN linear clocks (illustrated forN = 4
in Fig. 2) can be written in state space format as ẋ = Ax+ Buwith
an ideal EEGmeasurement of y = Cx using (A, C, B) defined in (3),
(7), (8). x is the state and u represents an input given in Eq. (9).

A(ω) =


A1 + ε11 ε12 · · · ε1N

ε21 A2 + ε22 · · · ε2N
...

...
. . .

...
εN1 εN2 · · · AN + εNN

 , (3)

where

Ai =

(0, +ωi)

′ , (−ωi, 0)′

, (4)
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