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A B S T R A C T

Compressive speech enhancement (CSE) has gained popularity in recent years as it bypasses the need for noise
estimation. Parallel to that, modulation domain has been widely studied in speech applications as it offers a more
compact representation and is closely associated with speech intelligibility enhancement. Motivated by the
development in modulation domain and CSE, this paper seeks to explore the suitability of modulation domain
based sparse reconstruction for use in CSE. The main idea is to study if the increased sparsity in the modulation
domain would benefit sparse reconstruction in CSE. The findings reveal that modulation transformation is
sparser and offers a stronger restricted isometry property (RIP) compared to the frequency transformation, which
is essential for sparse recovery with a high probability. The results are then extended to show that the sparse
reconstruction error in the modulation domain is upper bounded by the frequency domain. Experimental results
in a CSE setting concur with the theoretical derivations, with modulation domain CSE outperforming the fre-
quency domain CSE through different speech quality measures.

1. Introduction

Dudley in his landmark paper concluded that speech signals in
general are low frequency modulators, which modulate high frequency
carriers very much like the amplitude modulation (AM) process
(Dudley, 1939; 1940). Speech information can thus be viewed as a
composite of modulations at various slow changing rates, on a fast
changing carrier signal (Gallun and Souza, 2008). Further physiological
studies corroborate with Dudley as they observe mammalian auditory
system has specialized sensitivity to amplitude modulation of narrow-
band acoustic signals (Atlas and Shamma, 2003). Following this de-
velopment, various studies ranging from speech perception to psy-
choacoustics point to the fact that speech quality and intelligibility
mainly reside in the slow changing modulation information (Atlas and
Shamma, 2003; Schimmel, 2007; Schimmel and Atlas, 2005). From the
viewpoint of speech enhancement, these findings indicate that the slow
changing envelope (modulator) of the carrier frequency is the key
component in preserving speech intelligibility.

Paliwal et al. were the first to extend the short time Fourier trans-
form (STFT) analysis-modification-synthesis (AMS) framework to the
modulation domain (Paliwal et al., 2010). In the AMS framework, the
modulation spectrum is given by the STFT of the envelope of the short
time frequency bin, which carries short time information of the en-
velope as a function of time, frequency and modulation frequency. The
short time spectrum represents the short time spectral content of the

speech signal akin to the shape of the vocal tract (Paliwal et al., 2010;
Wu et al., 2011b). The short time modulation spectrum on the other
hand captures the temporal cues, which describes the time evolution of
the vocal tract. As mentioned, it is precisely this temporal information
that relates the most to speech intelligibility (Atlas and Shamma, 2003;
Schimmel, 2007; Vinton and Atlas, 2001). Clearly, the modulation
domain processing compactly represents the evolution of spectral-
temporal information of speech. Favourable results have been reported
in speech enhancement applications via the AMS framework (Wojcicki
and Loizou, 2012; Paliwal et al., 2012; Schwerin and Paliwal, 2014;
Wang and Brookes, 2018). Parallel developments in automatic speech
recognition research show a clear distinction between speech and noise
features in the modulation domain (Greenberg and Kingsbury, 1997;
Hermansky, 2011). These findings led to further development in mod-
ulation based automatic speech recognition (ASR) system (You and
Alwan, 2009; Sun and Lee, 2012; Moritz et al., 2011). The usefulness of
modulation spectrum has also been extended to speech emotion re-
cognition as modulation spectrum carries the signals long-term tem-
poral patterns, a perceptual cue used by listeners themselves (Wu et al.,
2011b).

Of late sparse reconstruction methods such as compressed sensing
(CS) (Donoho, 2006; Candés and Wakin, 2008) have been applied in
speech enhancement. CS theory states that sparse signals with a small
set of linear measurements can be reconstructed with an overwhelming
probability (Candés et al., 2006; Candés and Tao, 2006). Various CS
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based methods with favorable results have been reported (Low et al.,
2013; Sreenivas and Kleijn, 2009; Wu et al., 2011a), demonstrating its
popularity for speech enhancement applications. The general idea be-
hind compressive speech enhancement lies in the CS strength to
maintain only the sparse components (speech) and its weakness in
preserving the non-sparse components such as noise. The main as-
sumption is that whilst speech is fairly compact and dense in the time
domain, they are in fact sparse in the time-frequency representations
(Pham et al., 2009; Gardner and Magnasco, 2006). This is because
speech signal rarely excites all frequency components at any one time
and there will be lapses of time-frequency periods where the speech
power is negligible compared to the average power (Singh et al., 2018;
Davis et al., 2006), which makes it sparse. Unlike speech, background
noise is omnipresent and is thus generally non-sparse.

Similar to the time-frequency domain, one direct consequence of the
modulation domain is that it tends to increase the sparsity of the signal
representation. Modulation domain gives a compact representation of
the temporal speech dynamics, which is bounded by the physiological
limit of how fast the vocal tract can change. As such, the modulation
speech spectrum accentuates the sparsity of speech dynamics as speech
excitation can be considered to be a spiky excitation of a quasi-periodic
nature (Giacobello et al., 2012). In fact, a compactness study of speech
in the modulation domain shows the energy of the modulation coeffi-
cients mainly reside in the low modulation bands (Nilsson et al., 2007).
Further studies in the modulation spectrum demonstrate that speech
and noise have distinct modulation characteristics, which could be
exploited in speech discrimination or segregation applications (You and
Alwan, 2009; Sephus et al., 2013; Bentsen et al., 2016).

Coupled with the increased sparsity in the modulation spectrum and
its importance in speech intelligibility, this paper sets out to investigate
the use of modulation domain in sparse reconstruction. The main re-
search question here is to ascertain if the modulation spectrum is in-
deed more “compressible”, giving rise to a sparser representation. If so,
will the sparse reconstruction error for a sparser representation be
smaller? The paper first examines the sparsity of speech in the mod-
ulation domain through the notion of compressibility. The results are
then used to show that the sparse reconstruction error in the modula-
tion domain is indeed upper bounded by the reconstruction error in the
time-frequency domain. By using the compressive speech enhancement
system in Low et al. (2013) as a case example, this paper demonstrates
that the modulated approach provides improved performance for
compressive speech enhancement in terms of segmental signal to noise
ratio (SNR), perceptual evaluation of speech quality (PESQ) (Rix et al.,
2001; P.862, 2001) and the short-time intelligibility improvement
measure (STOI) (Taal et al., 2011a) for a wide range of SNRs and dif-
ferent types of noise.

2. Compressive speech enhancement

2.1. Introduction

As mentioned, CS states that super-resolved signals and images can
be reconstructed from far fewer measurements than the Nyquist sam-
pling (Candés, 2006). This is based on the assumption that the signals
involved have a sparse representation in one basis, which can be re-
covered from a few projections onto another incoherent basis. By
sparseness, it means that the majority of the signal measurements
concentrate in the neighbourhood of some baseline value. In most lit-
erature, this baseline value is set to zero. However, such definition is
not always sufficient because a sparse signal may have a baseline value
other than zero (Karvanen and Cichocki, 2003). In point of fact, many
sparse signals are “compressible” when expressed in the proper basis.
This means that CS allows for sampling right at the signal actual in-
trinsic information rate, with very little redundancy.

2.2. Signal model in the modulation domain

Dudley observed that speech signals are low bandwidth processes,
which modulate the higher bandwidth carriers (Dudley, 1939). As such,
speech signals can be described as a summation of amplitude modu-
lated narrow frequency bands spanning the full signal bandwidth. The
speech signal s(n) can then be represented as

=s n m n c n( ) ( ) ( ) (1)

where m(n) is the signal’s modulator and c(n) is the signal’s carrier.
Equivalently, in the short-time frequency domain

�=S ω k ω k C ω k( , ) ( , )* ( , ) (2)

where * denotes the convolution operator, � ω k( , ) and C(ω, k) are the
frequency representations of the modulator and carrier at frequency ω
and time instant k, respectively. From Eq. (2), � ω k( , ) is a slowly
varying temporal modulation spectrum, which modulates the carrier
signal, C(ω, k). Studies show C(ω, k) characterizes the fine structure of
the signal, whilst � ω k( , ) carry information involving both segmental
and suprasegmental, which contribute to the overall speech intellig-
ibility (Paliwal et al., 2010). Clearly, the amplitude or the envelope of
the temporal modulation spectrum holds the modulation frequency
components, which have been well linked to the perception of speech
quality and speech intelligibility. The envelope m(n) is given as

�=m n s n( ) { ( )}ENV (3)

where � {·}ENV represents the envelope detector operator. Correspond-
ingly, the � -point short time Fourier transform (STFT) representation
of the envelope at time instant k and frequency ω is
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The time-limited window −w n kR( )1 is with a hop size of R1, length � ,
�∈ … −ω ω ω, ,0 1 and k is the time index in the short-time frequency

domain.
Hence, the short-time modulation spectrum at the lth time instant

and ν modulation frequency of Eq. (1) for acoustic frequency ω is
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where {·}M and {·}F denotes the modulation transform and Fourier
transform operators, respectively and | · | is the absolute value operator.
The time-limited window −w n kR( ) is now with a hop size of R2,
length � and the modulation frequency �∈ … −ν ν ν, ,0 1.

Similarly, let the noisy signal, x(n) be

= +x n s n v n( ) ( ) ( ), (6)

where s(n) and v(n) are the speech and noise signals, respectively. Then,
the short-time modulation representation of the noisy signal is
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Eqs. (5) and (7) show that the modulation representation is equiva-
lently defined as computing the STFT of the envelopes of a signal’s
frequency representation. In other words, the modulation information
can be obtained by taking a STFT on the envelope of the signal’s
spectrum. Studies have shown modulation envelope frequencies be-
tween −1 16Hz carry the most speech information as they reflect the
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