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Finite data and moving horizon estimation schemes are increasingly being used for a range of practical
problems. However, both schemes suffer from potential conceptual difficulties. In the case of finite data,
most of the methods in common use, excluding Bayesian strategies, depend upon asymptotic results. On
the other hand, in the case of moving horizon estimation, there are two associated problems, namely
(i) estimation error quantification is typically not available as a part of the solution and (ii) one needs
to provide some form of prior state estimate (the so-called arrival cost). The current paper proposes a
combined MAP-Bayesian scheme which, inter alia, addresses the finite data and moving horizon problems
described above. The scheme combines MAP and Bayesian strategies. The efficacy of the method is
illustrated via numerical examples.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Finite data estimation arises in many practical problems. A
well-known example is parameter estimation when only a small
amount of data is available. It is common practice to use schemes
such as Prediction Error Methods (PEM) (Ljung, 1999) for finite
data parameter estimation. These generally perform well but suffer
from conceptual problems. For example, the usual quantification
of the accuracy in PEM depends upon asymptotic results. This has
motivated several authors to develop alternative schemes for pa-
rameter estimation with finite data (Campi & Weyer, 2002; Weyer
& Campi, 2002). Of course, full Bayesian methods also provide a
solution to the finite data problem but these suffer from other dif-
ficulties as we will discuss below.

A closely related problem to finite data estimation occurs in
Moving Horizon Estimation (MHE). MHE combines a sequence
of finite data problems. It has received increasing attention over
the last decade (Alessandri, Baglietto, & Battistelli, 2008; Basar
& Bernhard, 2008; Rao, 2000; Rao, Rawlings, & Lee, 2001; Rao,
Rawlings, & Mayne, 2003; Rawlings & Bakshi, 2006; Verdu &
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Poor, 1987). MHE transforms filtering, smoothing and prediction
problems into a standard constrained optimization problem over
a finite horizon. In order to limit the size of the problem, MHE
requires that the range of data used for estimation be small. This
means that, when new data arrives, the oldest data is summarized
by a, so called, arrival cost.?

MHE has several advantages compared with other schemes.
These advantages arise due to the transformation of the problem
into a standard optimization problem. One advantage is that it
allows one to incorporate constraints, for example, on the states of
the system (e.g. a tank cannot be more than full or less than empty).
Also, standard tools developed for Model Predictive Control can
be applied to MHE (see e.g. Diehl, Ferreau, & Haverbeke, 2009,
Rawlings & Mayne, 2009).

On the other hand, there are difficulties associated with the
usual MHE scheme. For example, the impact of past data needs
to be summarized in the form of an a-priori distribution. This is
typically achieved by adding an arrival cost (Basar and Bernhard
(2008) and Rao et al. (2003) Verdu and Poor (1987)). However,
the formulation of a statistically well posed arrival cost remains
an open problem (Haseltine & Rawlings, 2005). To address this
problem various approximate arrival cost strategies have been
proposed; see e.g. Alessandri et al. (2008), Rao (2000), Rao et al.
(2001), Ungarala (2009) and Zavala (2010). One such strategy
expresses the arrival cost as a simple quadratic function of the

2 This has also been called “entry cost” in the literature.
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difference between the current initial state and the propagation
of the initial state estimate from the previous horizon (see e.g.
Alessandri et al., 2008, Alessandri, Baglietto, Battistelli, & Zavala,
2010).

MHE can be given two interpretations. If one adopts proba-
bilistic models, then MHE can be interpreted as computing the
Maximum A Posteriori (MAP) estimate. Alternatively, one can in-
terpret the MHE method as simply a procedure for comparing a
measured trajectory with a model trajectory via a suitable cost
function. Whichever interpretation one uses, MHE requires opti-
mization for its solution. A fundamental issue of relevance to the
current paper is that only a point estimate is obtained. In the sequel
we adopt the probabilistic interpretation.

By way of contrast, Bayesian estimation computes the com-
plete a-posteriori distribution. However, Bayesian estimation also
suffers from disadvantages. In particular, Bayesian estimation is
generally computationally expensive. Moreover, the size of the
problem typically grows exponentially with the number of data
points. Hence some form of simplification is usually required. In
practice, this is achieved by using approximate schemes e.g. deter-
ministic gridding algorithms, particle filtering or other resampling
methods (Chen, 2003).

Here, we propose an alternative approach to finite data and/or
moving horizon estimation that combines MAP and Bayesian
techniques. It provides a solution to both the entry cost and error
quantification problems.

The layout of the remainder of the paper is as follows: in
Section 2, we present the problem formulation. In Section 3 we
outline the combined MAP-Bayesian scheme for finite data
problems. In Section 4 we explain the extension to Moving Horizon
Estimation. In Section 5, we present several examples. Conclusions
are presented in Section 6.

2. Problem formulation

Consider a nonlinear system described by a state space model
of the form

Xep1 = f (%) + wy (1)
Ye = h(x) + v (2)

where x; € R™, y, € R, For simplicity> we assume that

2]-(3 2)

Our goal is to estimate the states Xg, . . ., Xy, given observations
Y1, ..., Yn. We also assume that a prior distribution is available for
Xo.

Two general approaches for solving this problem are MAP
and Bayesian estimation. These two approaches are based on the
common element of the a-posteriori distribution. An expression for
the a-posteriori distribution is given in Lemma 1 below:

Lemma 1. Forthe system (1)-(2), the a-posteriori distribution for the

states xo, . . . , Xn, given the observations y1, ..., yn is
P(Xo, X1, ..., XN[Y1, ..., YN)
N
o [ [ pilxi-0)pilx)p(xo) 4)

i=1

where o< denotes “modulo a normalizing constant”.

3 The extension to more general models and noise distributions presents no
additional conceptual difficulties.

Proof. From the Bayes rule,

7yN—1)
L XNP(Xo, ...y XN). (5)

p(Xo, X1, ..., XN Yo, . ..
X pY1, -5 YnlXo, -

The results then follows by using the Markov property inherent in
(1),(2). O

MAP and Bayesian estimation can then be described as follows:
Maximum A Posteriori (MAP) estimation provides a point
estimate corresponding to the maximum of the a-posteriori
distribution, i.e.
S YN)- (6)

X0y .-y XN :argxmax p(X(),X1, ...,XN|y1,
0

,,,,, XN
Note that the associated algorithm only explores the a-posteriori
distribution in so far as is necessary to reach the maximum.

On the other hand, Bayesian estimation is aimed at computing
(at least approximately) the complete a-posteriori distribution as
in (4). From this distribution, one can extract any desired point
estimate (e.g. mean, MAP, etc.). Information about the accuracy of
any particular estimate is automatically available.

Unfortunately, the computation of the complete a-posteriori
distribution is, in general, intractable. However there are very
special cases, such as unconstrained linear Gaussian problems,
where the Kalman Filter provides an exact representation of the
a-posteriori distribution. Hence, for most problems, approximate
methods are typically used in practice. For example, the Extended
Kalman Filter (EKF), see e.g. Jazwinski (1970), linearizes the
nonlinear system, and then applies the standard Kalman Filter to
propagate the mean and covariance of the estimates. Alternatively,
one could use a deterministic grid on the state space. A related
approach is Minimum Distortion Filtering (MDF) (Goodwin, Feuer,
& Miiller, 2010), which uses a grid for the a-posteriori distribution
that is focused on the most likely parts of the state space. Another
commonly used method is Particle Filtering (PF) (Gordon, Salmond,
& Smith, 1993). This method draws a set of random samples from
the disturbance distribution.

Here we propose a strategy which combines MAP and Bayesian
methods. The core idea is explained in the next section.

3. Combined MAP and Bayesian estimation

We begin by describing the algorithm in the context of finite
data estimation. (Note that this is a necessary precursor to the
moving horizon case.)

Initialization: we assume that we are given the prior distribution
p(Xo) and data yq, ..., yn. Also, we assume that p(xq) is well
approximated by a point distribution of the form

Nx

p(x0) = Y pl8(xo — Xo(5)) (7)
s=1

where p{,...,p} denote point probability masses at Xo(1),

..., Xo(Ny) respectively, and N, is the number of points in the point
distribution.

We also assume that we are given a point distribution M (x) with
N, points,

Nx
M) =) adx — u(l) 8)
=1

that approximates a multivariate standard Gaussian distribution in
R™, i.e. zero mean and diagonal unitary variance I;,,.
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