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a b s t r a c t

Inmulti-object stochastic systems, the issue of sensormanagement is a theoretically and computationally
challenging problem. In this paper, we present a novel random finite set (RFS) approach to the multi-
target sensor management problem within the partially observed Markov decision process (POMDP)
framework. The multi-target state is modelled as a multi-Bernoulli RFS, and the multi-Bernoulli filter
is used in conjunction with two different control objectives: maximizing the expected Rényi divergence
between the predicted andupdated densities, andminimizing the expected posterior cardinality variance.
Numerical studies are presented in two scenarios where a mobile sensor tracks five moving targets with
different levels of observability.

Crown Copyright© 2014 Published by Elsevier Ltd. All rights reserved.

1. Introduction

Multi-target sensor control/management is essentially an op-
timal non-linear control problem. The goal of multi-target sensor
management is to ‘‘direct the right sensor on the right platform
to the right target at the right time’’ (Mahler, 2003b). However,
the multi-target sensor control problem differs from the classi-
cal control problem in that it deals with highly complex multi-
object stochastic systems. In multi-object stochastic systems, not
only do the number of objects vary randomly in time, but the
measurements are subject to missed detections and false alarms.
This means that the multi-target state and multi-target observa-
tion are inherently finite-set-valued. Consequently, standard opti-
mal control techniques are not directly applicable (Mahler, 2004).
Nonetheless, the multi-target sensor scheduling problem can still
be cast in the framework of partially observed Markov decision
processes (POMDPs),where the states and observations are instead
finite-set-valued, and control vectors are drawn from a set of ad-
missible sensor actions based on the current information states,
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which are then judged against the values of an objective function
associated with each action (Castanón & Carin, 2008).

A unified approach to characterizing systems with finite-
set-valued states is the multi-object systems framework, where
uncertainty is described by multi-object probability density
functions, and formalized via point process theory (Daley & Vere-
Jones, 1988; Stoyan, Kendall, & Mecke, 1995), or equivalently by
random finite set (RFS) theory throughMahler’s finite set statistics
(FISST) (Mahler, 2007b). The key advantage of the RFS based ap-
proach is that of a principled framework for modelling, estimation
and control ofmulti-object systems. In this paper,we formulate the
sensor control problem as a POMDPwith an information-theoretic
objective function as well as finite-set-valued states and measure-
ments. In essence, our approach can be summarized by three basic
steps:

(1) Modelling the sensor and targets as a multi-object stochastic
system, i.e. the multi-target states and multi-target observa-
tions as RFSs;

(2) propagating the multi-object posterior density recursively
in time, or alternatively a tractable approximation to the
posterior;

(3) at each time, determining the control action based on opti-
mization of the reward function over a set of admissible ac-
tions.

In the context of single-target tracking, the work in Doucet,
Vo, Andrieu, and Davy (2002) is the first to propose a practical
particle implementation based on theKullback–Leibler divergence,
and the approach in Singh, Kantas, Vo, Doucet, and Evans (2007)
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further considers the issue of observer trajectory planning. In the
more difficult multi-target context, there are a handful of works
falling within the RFS framework. Using the Rényi divergence as
the reward function, in Ristic and Vo (2010) the particle multi-
object Bayes filter (Vo, Singh, & Doucet, 2005) is used to propagate
the multi-object posterior, while in Ristic, Vo, and Clark (2011) the
particle probability hypothesis density (PHD) filter (Vo et al., 2005)
is used to propagate the firstmoment of themulti-object posterior.

This paper adopts an information theoretic approach for multi-
target sensor control, similar to the approach in Ristic and Vo
(2010) and Ristic et al. (2011), except that the Cardinality Bal-
anced Multi-Target Multi-Bernoulli (CB-MeMBer) filter (Vo, Vo, &
Cantoni, 2009) is used to propagate a parametrized approxima-
tion to the multi-object posterior. The proposed approach is at-
tractive in that it is applicable to general non-linear non-Gaussian
models, and when coupled with a particle implementation further
reduces the computational load significantly. Propagating an ap-
proximate multi-Bernoulli posterior as proposed is drastically
cheaper than propagating the full multi-object posterior as in Ris-
tic and Vo (2010), and thus the computation of any associated
cost function using a multi-Bernoulli approximation is generally
cheaper than using the full posterior. While the proposed use of
the CB-MeMBer filter incurs the same complexity as the use of the
PHD filter for the same purpose in Ristic et al. (2011), perform-
ing state estimation with the former is more efficient and reliable
than the latter because the need for clustering is eliminated. The
work in Ristic and Vo (2010) and Ristic et al. (2011) also demon-
strates that the Rényi divergence can be used as a reward function
for multi-target sensor control. In the same regard, the use of the
CB-MeMBer filter equally allows the Rényi divergence to be used
as a reward function, and further allows a new type of the reward
function to be developed. Since the variance of the estimated car-
dinality of a multi-Bernoulli posterior can be evaluated in closed
form (Mahler, 2007b), minimizing the cardinality variance can be
used as the control objective, thereby enabling direct control of the
cardinality estimation error.

The main contribution of this paper is a computationally
efficient sensor control algorithm for multiple targets, using the
CB-MeMBer filter, aswell as the numerical assessment of two types
of control objectives. Our preliminary result, in particular the idea
of using the CB-MeMBer filter, has been reported in the conference
paper (Hoang, 2012). The current paper provides full details of
the algorithm, an alternative cheaper control objective, and more
complete numerical studies.

The organization of the paper is as follows. In Section 2 we
review RFS modelling of multi-object systems and the approx-
imation of themulti-object posterior density using the CB-MeMBer
filter. The two reward functions are discussed in Section 3 while
sequential Monte Carlo (SMC) implementation is described in Sec-
tion 4. Section 5 presents simulation results and finally, Section 6
concludes the paper.

2. Cardinality balanced MeMBer filter

In this section, we summarize the CB-MeMBer filter, the main
tool that will be used throughout the paper. The filter was origi-
nally introduced in Vo et al. (2009) to account for the cardinality
bias of the MeMBer filter in Mahler (2007b).

2.1. General system model

In contrast with single-object systems where the states and
observations are modelled by random vectors, the states and
observations of a multi-object system are random finite sets of

vectors in the single-object state space X ⊆ Rn and single-object
observation space Z ⊆ Rm, respectively:

Xk = {xk1, . . . , x
k
n} ∈ F (X ); (1)

Zk = {zk1, . . . , z
k
m} ∈ F (Z ). (2)

Here F (X ) and F (Z ) denote the spaces of all finite subsets of X

and Z . The system is described by the following probabilistic state
space model:

Xk ∼ πk|k−1(Xk|Xk−1) (3)

Zk ∼ gk(Zk|Xk) (4)

where Xk and Zk respectively are the state and observation of
the system at time k. Eq. (3) describes the system dynamics
encapsulating all aspects of object birth, death and transitionwhile
Eq. (4) encapsulates all aspects of sensor detection and false alarms.

Given the system model (3)–(4), the objective is to determine
at each time step k the multi-object posterior probability den-
sity fk(Xk|Z1:k). In the Bayesian filtering framework, fk(Xk|Z1:k) is
obtained through two steps: time prediction and measurement
update (Mahler, 2007b). The predicted density at time k, de-
noted as fk|k−1(Xk|Z1:k−1), is computed by the multi-object Chap-
man–Kolmogorov equation:

fk|k−1(Xk|Z1:k−1) =


πk|k−1(Xk|Xk−1)fk−1(Xk−1|Z1:k−1)δXk−1 (5)

where fk−1(Xk−1|Z1:k−1) is the posterior density from the previous
time step k−1.When new observations arrive at the sensor(s), the
new posterior density is computed via themulti-object Bayes rule:

fk(Xk|Z1:k) =
gk(Zk|Xk)fk|k−1(Xk|Z1:k−1)
gk(Zk|Xk)fk|k−1(Xk|Z1:k−1)δXk

. (6)

Notice that the integrals in (5) and (6) are not ordinary integrals,
but are set integrals, and that the recursion (5) and (6) has
no analytic solution in general. A sequential Monte Carlo (SMC)
implementation of the Bayes multi-object filter is given in Vo et al.
(2005). However, this technique is computationally prohibitive
which at best is able to accommodate a small number of targets.
The multi-target sensor scheduling algorithm proposed in Ristic
and Vo (2010) employs this SMC implementation of the multi-
object Bayes filter.

Since propagation of the full posterior density given by (6) is
in general intractable, several alternatives have been proposed,
which propagate only summary statistics or important parameters
in place of the full posterior density. For example, the PHD and
Cardinalized PHD (CPHD) filters (Mahler, 2003a, 2007a; Vo & Ma,
2006; Vo et al., 2005; Vo, Vo, & Cantoni, 2007) propagate the
intensity or first order moment of the posterior density, and were
employed by themulti-target sensor scheduling approach in Ristic
et al. (2011). An alternative is the CB-MeMBer filter (Mahler,
2007b; Vo et al., 2009), which propagates a parametrized multi-
Bernoulli approximation of the multi-object posterior density.
The main advantage of the CB-MeMBer approach is its direct
applicability to non-linear non-Gaussian models, which when
coupled with an SMC implementation, obviates the need for the
clustering of the particle population in order to extract estimates.

2.2. CB-MeMBer recursion

We now summarize the recursion for the CB-MeMBer filter. A
Bernoulli RFS X has realizations either as the empty set or a sin-
gleton and is characterized jointly by a probability of existence
r ∈ [0, 1] and a probability density p. That is, the Bernoulli RFS
takes on a singleton value with probability r , and conditional upon
existence, the value of the singleton is distributed according to
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