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a b s t r a c t

A performance oriented multi-loop approach to the adaptive robust tracking control of one-degree-
of-freedom mechanical systems with input saturation, state constraints, parametric uncertainties and
input disturbances is presented. The control system contains three loops. In the outer loop, constrained
optimization algorithms are developed to generate a replanned trajectory on-line at a low sampling
rate so that the converging speed of the overall system response to the desired target is maximized
while not causing input saturation and the violation of state constraints. In the inner loop, a constrained
adaptive robust control (ARC) law is synthesized and implemented at high sampling rate to achieve the
required robust tracking performanceswith respect to the replanned trajectory evenwith various types of
uncertainties and input saturation. In the middle loop, a set-membership identification (SMI) algorithm
is implemented to obtain a tighter estimate of the upper bound of the inertia so that more aggressive
replanned trajectory could be used to further improve the overall system response speed. Interaction of
the three loops is explicitly characterized by a set of inequalities that the design variables of each loop
have to satisfy. It is theoretically shown that the resulting closed-loop system can track feasible desired
trajectories with a guaranteed converging time and steady-state tracking accuracy without violating the
state constraints. Experiments have been carried out on a linear motor driven industrial positioning
system to compare the proposed multi-loop constrained ARC algorithm with some of the traditional
control algorithms. Comparative experimental results obtained confirm the superior performance of the
proposed algorithm over existing ones.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Nowadays, performance requirements for motion control
are becoming increasingly stringent for industrial applications.
Both the steady-state tracking accuracy requirement and certain
transient performances (such as the fast response speed) have to
bemet. On the other hand, themechanical systems to be controlled
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are often subject to various types of physical constraints such
as the input saturation and state constraints. The systems may
also experience large extent of parametric uncertainties, uncertain
nonlinearities and disturbances. Traditionally, high gain feedback
based approaches are often used to address the disturbance
rejection issue in motion control problems so that good steady-
state tracking accuracy can be achieved. To deal with parametric
uncertainties, parameter adaptation laws can be added to the
feedback structure (Astrom &Wittenmark, 1994). Various types of
control strategies have been developed along this line of thought
process (Krstic, Kanellakopoulos, & Kokotovic, 1995; Polycarpou
& Ioannou, 1993). Adaptive robust control (ARC) developed in the
past twodecades is a good example of this kind of control strategies
to deal with disturbances and parametric uncertainties (Hong &
Yao, 2007a; Yao & Tomizuka, 1996) with a number of successful
applications. However, this type of feedback control strategies
cannot handle physical constraints of the systems very well.
It is difficult to maximize the converging speed of the overall
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system response to the desired trajectory under different physical
constraints when the initial tracking errors are large.

Contrary to the high gain feedback based approaches, optimal
control is a class of control strategy that could handle the con-
straints of the system and achieve certain optimal transient per-
formance (e.g. minimum converging time) in a systematic way
(Mayne, Rawlings, Rao, & Scokaert, 2000; Sage & White, 1968).
However, it is well known that when strong disturbances and un-
certainties are present, the performance of the optimal control
might be very poor. Since no high gain feedback is incorporated
in the optimal control law, the steady-state tracking error could be
significantly large, and even the closed-loop stability is question-
able. Partly because of these, they are seldom used in the precision
motion control of mechanical systems.

The above quick review of literature reveals that the problem of
maintaining closed-loop stability while attempting to track a non-
conservative desired trajectory with small steady-state tracking
error and fast converging speed under physical constraints
(e.g., the control input saturation) has not been well addressed.
The aim of this paper is to develop a performance oriented
multi-loop constrained adaptive robust control approach to solve
the problem stated above for one-degree-of-freedom (1-DOF)
mechanical systems. The main idea of the proposed approach
is to implement an on-line constrained time-optimal trajectory
planning algorithm in the outer-loop in conjunction with the
conventional ARC controller in the inner-loop such that not only
the good steady-state tracking accuracy of the conventional ARC
approach can be preserved, but also the converging speed of the
tracking error to the targeted steady-state tracking accuracy can
be maximized under physical constraints. In addition, a middle
loop is also included to obtain tighter estimation bounds of the
inertia using the set-membership identification technique (Fogel
& Huang, 1982) so that more aggressive on-line trajectory
replanning can be used to further improve the overall system
converging speed. Althoughmore complicated than the traditional
algorithms, it is theoretically and experimentally demonstrated
that the closed-loop system with the proposed algorithm is able
to simultaneously achieve good steady-state tracking performance
and fast transient response speed, which could not be achieved
with any of the existing algorithms.

The rest of the paper is organized as follows: Section 2 presents
the system dynamics and formulates the problem to be solved;
Sections 4 to 6 present the inner-loop, middle-loop and outer-loop
designs, respectively. Section 7 formulates the overall control law.
Section 8 presents the comparative experimental results on a 1-
DOF linear motor driven stage. Section 9 concludes the paper.

2. Problem formulation

The dynamics of 1-DOF mechanical system can be represented
by the following equation:

ẋ1 = x2,
Mẋ2 = S(u) + ϕT (x1, x2, t)θ + ∆(x1, x2, t),
y = x1

(1)

where x = [x1, x2]T is the state of the system that is measurable.
y = x1 represents the position of the system to be controlled, with
its velocity denoted as x2. M represents the unknown inertia of
the system normalized with respect to the electrical gain of the
control input. θ ∈ Rm is the vector of unknown parameters of the
system, and ϕ(x1, x2, t) ∈ Rm is the vector of known regressors
corresponding to θ. The term ϕT (x1, x2, t)θ may incorporate some
nonlinearities existing in the mechanical system such as the
nonlinear frictions and the electro-magnetic forces. u ∈ R is
the control input to the system, and the nonlinear function S(u)

representing the input saturation constraint of the system is given
by

S(u) =


u, if |u| ≤ uM
uMsign(u), if |u| > uM ,

(2)

where uM is the input saturation limit. ∆(x1, x2, t) represents the
lumped model uncertainties including the input disturbances. The
system is also subject to the following state constraints:

x ∈ Ωx
∆
=


[x1 x2]T : x1min ≤ x1 ≤ x1max, x2min ≤ x2 ≤ x2max


, (3)

in which x1min, x1max are the constant position bounds, and x2min <
0, x2max > 0 are the constant velocity bounds. All these bounds are
known in practice.

The following assumptions are made for the unknown parame-
tersM , θ and the uncertainty term ∆(x1, x2, t):

Assumption 1. The extent of the parametric uncertainties and
uncertain disturbances are known, i.e.,

M ∈ ΩM
∆
= {M : Mmin ≤ M ≤ Mmax}

θ ∈ Ωθ
∆
= {θ : θmin ≤ θ ≤ θmax}

δl(x1, x2, t) ≤ ∆(x1, x2, t) ≤ δu(x1, x2, t),
|δl(x1, x2, t)| ≤ d, |δu(x1, x2, t)| ≤ d,

∀x1 ∈ [x1min, x1max], x2 ∈ [x2min, x2max], t ≥ 0,

(4)

where Mmin > 0, θmin = [θ1min, . . . , θ(m)min]
T , θmax = [θ1max, . . . ,

θ(m)max]
T . δl(x1, x2, t) and δu(x1, x2, t) are the known bounding

functions for∆(x1, x2, t), and d is a known constant value denoting
the upper bound for their absolute values.

Assumption 2.

φl(x1, x2, t) ≤ ϕT (x1, x2, t)θ ≤ φu(x1, x2, t),
|φl(x1, x2, t)| ≤ h, |φu(x1, x2, t)| ≤ h

∀x1 ∈ [x1min, x1max], x2 ∈ [x2min, x2max], θ ∈ Ωθ,

(5)

where φl(x1, x2, t) and φu(x1, x2, t) are the known bounding
functions for ϕT (x1, x2, t)θ, and h is a known constant value
denoting the upper bound of their absolute values. (For simplicity,
φl and φu are assumed to have the same known constant upper
bound.)

Assumption 3.

h + d < uM . (6)

The output trajectory tracking problem is considered in this paper.
The objective is to design a control law u(t) such that, in the
presence of input saturation and disturbances, the output y(t)
converges to the desired output yd(t) as fast as possible and the
tracking error eyd(t) = y(t) − yd(t) at the steady state is as small
as possible. The desired output yd(t) is assumed to be second-order
differentiable with the following assumption:

Assumption 4.

x1min < x1dmin ≤ yd(t) ≤ x1dmax < x1max,
x2min < x2dmin ≤ ẏd(t) ≤ x2dmax < x2max,

|ÿd(t)| ≤ ÿdmax <
uM − h − d

Mmax
.

(7)

3. Control structure

In this section, a novel hybrid control structure shown in Fig. 1
is proposed to solve the problem in a holistic way such that all
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