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a b s t r a c t

This work discusses the identification of single-block smooth nonlinear discrete-time polynomial models
with non-smooth steady-state features. Based on bifurcation theory, conditions are developed and used
to determine some general aspects of the model structure and also to determine some constraints on
the parameters required to guarantee the aforementioned features. The procedure uses only smooth
functions of the regressors, a single possibly smooth input and some prior knowledge about the steady-
state behavior. The non-smooth static function is here obtained by interchanging the stability of two sets
of equilibria at the break-point, which corresponds to guaranteeing a transcritical bifurcation. This work
discusses how to determine the domain over which the results are valid. The procedure is illustrated with
simulated and experimental data.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Nonlinear system identification is a challenging problem, espe-
cially when the data are produced by a system with non-smooth
static nonlinearities. This problem has been dealt with in differ-
ent ways, as for instance using smooth static functions to approx-
imate the non-smooth static function (Merzouki, Davila, Fridman,
& Cadiou, 2007). A workable approach uses block-oriented mod-
els, such as the Hammerstein (Bai, 2002; Giri, Rochdi, & Chaoui,
2009) or the sandwich (Tan, Dong, & Li, 2009) representations. In
such cases non-smooth and even discontinuous static functions
are approximated by non-smooth algebraic functions in order to
accurately represent discontinuities at the break-points. Specific
control schemes assume that an algebraic function (usually non-
smooth) is used to approximate the static characteristic (Zhou,
Wen, & Zhang, 2006), whereas the dynamics are modeled by a
(smooth) differential or difference equation. Some nonlinear con-
trol schemes assume that the system is modeled by a single-block
model, typically a NARX (nonlinear autoregressive model with ex-
ogenous inputs) (Napoli & Piroddi, 2010; Pröll & Karim, 1994). In
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such cases, the inclusion of non-smooth functions to model the
static characteristic would also affect the dynamics, which are usu-
ally smooth. The identification of systemswith hysteresis has been
discussed in Leva and Piroddi (2002)where additional non-smooth
inputs computed from the data have been employed and actually
play the role of non-smooth regressors. The apparent incompati-
bility of having single-block models with static functions that may
have break-points seems to be confirmed by the lack ofmethods to
identify such models with smooth dynamics yet with non-smooth
steady-state features.

This work presents a gray-box procedure for the identification
of single-block NARX polynomial models with smooth dynamics,
which can accurately reproduce a class of steady-state functions
with one break-point. This is achieved by designing two sets of
equilibria, one for each part of the steady-state function (SSF)
considered, and switching their stability at the desired break-point
using results derived from bifurcation theory. Some aspects of the
SSF are considered to be known a priori. The importance of using
prior knowledge in modeling and control has been argued in Bars
et al. (2008). The conditions under which such bifurcation takes
place for NARX polynomial models and the domain of validity of
the results are given using simple lemmas. The ease with which
the lemmas are applied and understood will enable tackling the
difficult problem at hand. The key contribution and novelty of
this work lays in the adaptation of bifurcation theory to NARX
polynomial models in order to achieve a non-smooth steady-state
behavior with a model composed solely of smooth functions. This
paper deals with the transcritical bifurcation which is useful to
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model the steady-state behavior of some control valves. Other
bifurcations have been addressed elsewhere (Aguirre & Furtado,
2007; Rodrigues & Aguirre, 2012).

The work is organized as follows. Section 2 provides back-
ground material. The problem is stated in Section 3 and solved in
Section 4 for a class of steady-state functions and in Section 5 for
a slightly more general class. Section 6 provides an example with
experimental data. The main conclusions of the paper are given in
Section 7.

2. Background

2.1. Nonlinear polynomial models

A general NARX model (nonlinear autoregressive model with
exogenous inputs) can be written as (Billings, Chen, & Korenberg,
1989)

y(k) = F [y(k − 1), . . . , y(k − ny), u(k − d) . . . u(k − nu)]

+ e(k), (1)

where u(k) and y(k) are respectively the input and output signals
and e(k) accounts for uncertainties and possible noise. ny, nu, d ∈

N are the maximum lags for output, input and the time delay, re-
spectively. In this work F [·] is assumed to be a polynomial with
nonlinearity degree ℓ. In prediction error minimization (PEM) es-
timation problems, amoving average (MA) part is usually included
in the model to reduce bias. In this paper constrained parameter
estimation will be pursued and therefore the MA part will not be
used. The NARX part of model (1) can be expanded as the summa-
tion of terms with degrees of nonlinearity in the range [1 ℓ]. Each
(p+m)th-degree term can contain a pth-degree factor in y and an
mth-degree factor in u and is multiplied by a constant parameter
cp,m(τ1, . . . , τp+m) as follows

y(k) =

ℓ
m=0

ℓ−m
p=0

ny,nu
τ1,τm

cp,m(τ1, . . . , τp+m)

p
j=1

y(k − τj)

×

m
i=1

u(k − τp+i) + e(k), (2)

where the third summation is
ny,nu
τ1,τm

≡

ny
τ1=1

· · ·

ny
τp=1

nu
τp+1=d

· · ·

nu
τp+m=d

, (3)

and the upper limit is ny if the summation refers to factors in y or
nu for factors in u. Themodel structure can be chosen using orthog-
onal techniques (Billings et al., 1989).

The choice of which terms to use in order to compose the
final model is known as the structure selection problem. Effec-
tive solutions to this problem include the error reduction ratio
(ERR) (Billings et al., 1989) and the simulation reduction ratio (SRR)
criterion (Piroddi, 2008). See Hong et al. (2008) for a review of
structure selection methods.

Steady-state analysis is accomplished by taking ȳ = y(k −

τj), ∀τj = 1, . . . , ny, ū = u(k − τi), ∀τi = d, . . . , nu and in that
case Eq. (2) can be rewritten as

ȳ =

ℓ
m=0

ℓ−m
p=0


ny,nu
τ1,τm

cp,m(τ1, . . . , τp+m)


ȳpūm

=

ℓ
m=0

ℓ−m
p=0

Σypum ȳpūm. (4)

The solution of (4)will yield the fixed points, or equilibria, ofmodel
(2) for a given ū.

The constant within the large parenthesis in Eq. (4), denoted
Σypum , is the cluster coefficient of a set of model terms in (2), called
term cluster, indicated byΩypum . Terms of the form yp(k−τj)um(k−

τi) ∈ Ωypum form+p ≤ ℓ, where τi and τj are any time lags (Aguirre
& Billings, 1995).

For instance, for themodel y(k) = θ1y(k−1)y(k−2)+θ2y(k−

1)u(k−2)+θ3y(k−3)u(k−3)wehave ny = nu = 3, d = 2, ℓ = 2
and θ1 = c2,0(1, 2), θ2 = c1,1(1, 2) and θ3 = c1,1(3, 3). This model
has two term clusters, namely: Ωy2 with coefficient Σy2 = θ1 and
Ωuy with coefficient Σuy = θ2 + θ3. Hence, in steady-state (see
Eq. (4)) ȳ = Σy2 ȳ

2
+ Σuyȳū.

2.2. Constrained parameter estimation

Model (2) can be written as y(k) = ψT(k − 1)θ̂ + ξ(k),
where ψ(k − 1) is the regressors vector which contains linear
and nonlinear combinations of output and input terms up to and
including time k − 1 and ξ(k) is the residual at instant k. Consider
the set of constraints on the parameter vector written as c = Sθ,
where c is a given constant vector, and S is a known constant
matrix. The solution to the problem

θ̂CLS = argmin

ξTξ


θ : c = Sθ,
(5)

is given by (Draper & Smith, 1998)

θ̂CLS = θ̂LS − (Ψ TΨ )−1ST[S(Ψ TΨ )−1ST]−1(Sθ̂LS − c), (6)

where Ψ is the regressors matrix and θ̂LS = (Ψ TΨ )−1Ψ Ty is the
standard least-squares solution. The estimator in (6) will be biased
in general. However, the aim in this work is to be able to impose a
transcritical bifurcation and this will be achieved at the expense of
some bias.

2.3. The transcritical bifurcation

The normal form of the supercritical transcritical bifurcation is
given by

y(k) = Ft[y(k − 1), µ] = y(k − 1) + µ y(k − 1) − y(k − 1)2, (7)

whereµ is the bifurcation parameter. The steady-state behavior of
(7) is reached by taking ȳ = y(k) = y(k − 1), thus yielding

0 = µ ȳ − ȳ2 = ȳ(µ − ȳ). (8)

The fixed points or equilibria of Eq. (7) are given by the two lines
ȳ = µ and ȳ = 0, that intersect at the origin of the ȳ − µ plane, as
shown in Fig. 1(a). The conditions for stability are given by

−1 <
∂Ft

∂y(k − 1)


y(k−1)=ȳ

< 1

−1 < 1 + µ − 2y(k − 1)|y(k−1)=ȳ < 1.
(9)

For the trivial fixed point ȳ = 0, conditions (9) becomes −2 <
µ < 0, and for the nontrivial fixed point ȳ = µ, stability holds for
0 < µ < 2, as shown in Fig. 1(b).

3. Statement of the problem

The steady-state behavior of the NARX model (1) is obtained
by taking ȳ = y(k − τj), ∀τj = 1, . . . , ny, ū = u(k − τi), ∀τi =

d, . . . , nu to yield

ȳ = F̄ [ȳ, ū]. (10)

For a given constant value of the input, depending on the model
function F , the output could have one or more possible values
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