
Automatica 50 (2014) 1243–1248

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Brief paper

Optimization of the separation of two species in a chemostat✩

Térence Bayen a,b,1, Francis Mairet c
a Université Montpellier 2, Case courrier 051, 34095 Montpellier Cedex 5, France
b INRA-INRIA ‘MODEMIC’ team, INRIA Sophia-Antipolis Méditerranée, UMR INRA-SupAgro 729 ‘MISTEA’ 2 place Viala 34060 Montpellier, France
c Inria BIOCORE, BP93, 06902 Sophia-Antipolis Cedex, France

a r t i c l e i n f o

Article history:
Received 23 April 2013
Received in revised form
6 December 2013
Accepted 23 January 2014
Available online 4 March 2014

Keywords:
Optimal control
Singular control
Ecology

a b s t r a c t

In this work, we study a two species chemostat model with one limiting substrate, and our aim is to
optimize the selection of the species of interest. More precisely, the objective is to find an optimal
feeding strategy in order to reach in minimal time a target where the concentration of the first species is
significantly larger than the concentration of the other one. Thanks to the PontryaginMaximum Principle,
we introduce a singular feeding strategy which allows to reach the target, andwe prove that the feedback
control provided by this strategy is optimal whenever initial conditions are chosen in the invariant
attractive manifold of the system. The optimal synthesis of the problem in presence of more than one
singular arc is also investigated.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Selection of species has been widely used in agriculture and
biotechnology in order to improve productivity. For microorgan-
isms, the selection process can be based on genetic tools. Another
way to proceed is to drive the competition between species in a
chemostat. In this case, a control strategy should be defined ade-
quately in order to select species according to a given criteria (see
e.g. Masci, Bernard, and Grognard (2008) and Masci et al. (2009)).
Here, we consider a two species chemostat limited by one sub-
strate with Monod-like growth functions (see Smith andWaltman
(1995)). The following property known as the competitive exclu-
sion principle is standard in the theory of chemostat (see Smith and
Waltman (1995)): given a constant dilution rate, the species which
can grow at a rate equal to the dilution with the smallest substrate
concentration survives whereas the other one disappears as time
goes to infinity. This approach can be used in order to select asymp-
totically one of the two species provided that the dilution rate is
adequately chosen.

In this paper, we propose an alternative approach based on
optimal control theory in order to reach in finite time a certain
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target where the concentration of a given species is significantly
larger than the other one. More precisely, our aim is to find an
optimal feeding strategy in order to steer the system to this target
in minimal time. To characterize optimal trajectories, we proceed
as follows. We assume that initial conditions are in the invariant
attractive set of the system (see Smith and Waltman (1995)),
so that it can be put into a two-dimensional affine controlled
system with a single input. Thanks to the Pontryagin Maximum
Principle and cooperatively properties of the adjoint system, we
show that it is not optimal for a trajectory to have a switching
point before reaching either the target or the singular arc. This
leads to a complete description of optimal trajectories in the case
where initial conditions are taken in the invariant attractive set.
Theorem 1 is ourmain result and states that the optimal strategy is
singular. In other words, the optimal feedback control corresponds
to a most rapid approach (see Cartigny and Rapaport (2004)) to a
singular arc (if it is reached).

The paper is organized as follows. Section 2 is devoted to the
statement of the optimal control problem. In Section 3, we apply
the Pontryagin Maximum Principle in order to derive necessary
conditions on optimal trajectories. In Section 4, we introduce the
singular arc strategy, and we prove that it is optimal for reaching
the target (Theorem 1). The last section discusses the problem in
presence of more than one singular arc (which may happen with
Haldane-like growth functions).

2. Statement of the problem

A chemostat model with one limited resource, two species,
and adimensioned yield coefficients can be modeled as follows
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Fig. 1. Top: plot of the growth functions µ1 (in blue) and µ2 (in green) satisfying
Hypothesis 1. Bottom: plot of s −→ µ1(s) − µ2(s). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

(see Smith and Waltman (1995)):ẋ1 = [µ1(s)− u]x1,
ẋ2 = [µ2(s)− u]x2,
ṡ = −µ1(s)x1 − µ2(s)x2 + u[sin − s].

(1)

Here, x1 (resp. x2) is the concentration of the first (resp. second)
species in the reactor, s is the concentration of substrate, sin is
the input substrate concentration, u is the dilution rate, and µi
are the growth functions of the two species. In the following, we
suppose that the specific growth rates of both species µi, i = 1, 2
are nonnegative increasing C1 functions with µi(0) = 0. We will
also impose that the first species grows faster than the second one
when substrate is scarce, and vice versa (see e.g. Fig. 3A in Norberg
(2004) for a collection of data from several studies on silica-limited
diatoms which illustrate such tradeoff between substrate affinity
and maximum growth rate).

Hypothesis 1. The growth functions of the two species fulfill the
following conditions:
• there exists a unique ŝ > 0 such that µ1(ŝ) = µ2(ŝ)
• the function s −→ µ1(s) − µ2(s) is increasing on (0, s̄), and

decreasing on (s̄,+∞), with s̄ < ŝ.

For example, Hypothesis 1 is fulfilled for two growth rates of
Monod type (see Fig. 1):

µ1(s) :=
µ1s

k1 + s
, µ2(s) :=

µ2s
k2 + s

(2)

with µ1k2 > µ2k1 and µ1 < µ2.
Our aim is to find an adequate feeding strategy in order to

reach in finite time a target set where the concentration of the
first species is significantly larger than the other one. In order to
simplify the system, we will make the following requirements. Let
M := x1 + x2 + s denote the total mass of the system, which
satisfies:

Ṁ = u(sin − M). (3)

From (3), it is standard that the set

F := {(x1, x2, s) ∈ R∗

+
× R∗

+
× R∗

+
| x1 + x2 + s = sin},

is invariant and attractive for system (1), see Smith and Waltman
(1995). From now on, we assume that initial conditions are in the
set F , so that the triple (x1, x2, s) satisfies x1 + x2 + s = sin. System
(1) becomes a two-dimensional affine system with one input u:
ẋ1 = [µ1(s)− u]x1,
ẋ2 = [µ2(s)− u]x2,

(4)

where s = sin − x1 − x2. The set of admissible controls for (4) is
given by:

U := {u : [0,+∞] → [0, umax] | meas.},

where umax denotes the maximum dilution rate. As s is positive,
initial conditions are in the set

E := {(x1, x2) ∈ R∗

+
× R∗

+
| x1 + x2 < sin},

which is invariant with respect to (4). We are now in position to
state the optimal control problem. Let ε > 0 be a small parameter.
In order to select the first species, we consider a target T defined
as follows:

T := {(x1, x2) ∈ E | x2 ≤ εx1}.

The optimal control problem reads as follows. Given x0 := (x01, x
0
2)

∈ E, our aim is to find an admissible control u ∈ U steering the
solution x(·) of (4) from x0 to the target in minimal time:

inf
u∈U

t(u) s.t. x(t(u)) ∈ T , (5)

where t(u) is the first entry time in the target.

Remark 1. From a practical point of view, it is important to ensure
that x1(t(u)) is also over a certain threshold. For sake of simplicity,
we do not add this constraint. We will see in the optimal synthesis
that this is actually not necessary.

Without any loss of generality, we may assume that umax = 1.
The next assumption is standard and means that the maximum
value of the input flow rate can be larger than the growth of
microorganisms (see e.g. Bayen, Gajardo, and Mairet (2013) and
Gajardo, Ramirez, and Rapaport (2008)):

Hypothesis 2. The growth function µ1 and µ2 satisfy:

max
s∈[0,sin]

(µ1(s), µ2(s)) < 1. (6)

The next assumptionmeans that the input substrate concentration
has been chosen large enough such that both species can win the
competition.

Hypothesis 3. The input substrate concentration satisfies sin > ŝ.

Remark 2. For any initial condition x0 ∈ E, there exists a control
u ∈ U steering (4) to the target T . Indeed, one can apply the
competitive exclusion principle (see Smith and Waltman (1995))
with a constant control u < µ1(ŝ) in order to select the first
species. By the previous remark, the compactness of the control set,
and the linearity of (4) with respect to u, one can apply Fillipov’s
Theorem (see e.g. Vinter (2000)) in order to prove the existence of
an optimal control for (5).

We now introduce subsets of E that will play a major role in the
optimal synthesis of the problem (see Section 4). Let us write (4)
as a two-dimensional affine system with a drift:

ẋ = f (x)+ ug(x),
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