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a b s t r a c t

Self-triggered control is a recently proposed paradigm that abandons the more traditional periodic time-
triggered execution of control tasks with the objective of reducing the utilization of communication
resources, while still guaranteeing desirable closed-loop behavior. In this paper, we introduce a self-
triggered strategy based on performance levels described by a quadratic discounted cost. The classical
LQR problem can be recovered as an important special case of the proposed self-triggered strategy. The
self-triggered strategy proposed in this paper possesses three important features. Firstly, the control laws
and triggering mechanisms are synthesized so that a priori chosen performance levels are guaranteed by
design. Secondly, they realize significant reductions in the usage of communication resources. Thirdly,
we address the co-design problem of jointly designing the feedback law and the triggering condition.
By means of a numerical example, we show the effectiveness of the presented strategy. In particular,
for the self-triggered LQR strategy, we show quantitatively that the proposed scheme can outperform
conventional periodic time-triggered solutions.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In many control applications, controllers are nowadays im-
plemented using communication networks in which the control
task has to share the communication resources with other tasks.
Despite the fact that resources can be scarce, controllers are typ-
ically still implemented in a time-triggered fashion, in which
control tasks are executed periodically. This design choice often
leads to over-utilization of the available communication resources,
and/or causes a limited lifetime of battery-powered devices, as it
might not be necessary to execute the control task every period to
guarantee the desired closed-loop performance. Also in the area of
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‘sparse control’ (Gallieri & Maciejowski, 2012), in which it is desir-
able to limit the changes in certain actuator signals while still real-
izing specific control objectives, periodic execution of control tasks
may not be optimal either. In both networked control systemswith
scarce communication resources and sparse control applications
arises the fundamental problem of determining optimal sampling
and communication strategies, where optimality needs to reflect
both implementation cost (related to the number of communica-
tions and/or actuator changes) as well as control performance. It is
expected that the solution to this problem results in control strate-
gies that abandon the periodic time-triggered control paradigm.

Two approaches that abandon the periodic communication pat-
tern are event-triggered control (ETC), see, e.g., Arzén (1999),
Åström and Bernhardsson (1999) and Donkers and Heemels
(2012), Heemels, Sandee, and van den Bosch (2008), Heemels et al.
(1999), Henningsson, Johannesson, and Cervin (2008), Lunze and
Lehmann (2010), Tabuada (2007) and Wang and Lemmon (2009),
and self-triggered control (STC), see, e.g., Almeida, Silvestre, and
Pascoal (2010, 2011), Anta and Tabuada (2010), Donkers, Tabuada,
and Heemels (2012), Mazo, Anta, and Tabuada (2010), Velasco,
Fuertes, and Marti (2003) and Wang and Lemmon (2009). Al-
though ETC is effective in the reduction of communication or
actuator movements, it was originally proposed for different rea-
sons, including the reduction of the use of computational resources
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and dealing with the event-based nature of the plants to be con-
trolled. In ETC and STC, the control law consists of two elements
being a feedback controller that computes the control input, and
a triggering mechanism that determines when the control input
has to be updated. The difference between ETC and STC is that
in the former the triggering consists of verifying a specific condi-
tion continuously and when it becomes true, the control task is
triggered, while in the latter at an update time the next update
time is pre-computed. ETC laws have been mostly developed for
continuous-time systems, although they have also appeared for
discrete-time systems, see, e.g., Cogill (2009), Eqtami, Dimarogo-
nas, and Kyriakopoulos (2010), Heemels and Donkers (2013), Li
and Lemmon (2011), Yook, Tilbury, and Soparkar (2002), Molin
and Hirche (2013) and Lehmann (2011, Sec. 4.5). In addition,
in Arzén (1999), Henningsson et al. (2008), Heemels et al. (2008)
and Heemels, Donkers, and Teel (2013) so-called periodic event-
triggered control strategies were proposed and analyzed for
continuous-time systems.

At present ETC and STC form popular research areas. However,
two important issues have only receivedmarginal attention: (i) the
co-design of both the feedback law and the triggering mechanism,
and (ii) the provision of performance guarantees (by design). To
elaborate on (i), note that current design methods for ETC and
STC are mostly emulation-based approaches, by which we mean
that the feedback controller is designed without considering the
scarcity in the system’s resources. The triggering mechanism is
only designed in a subsequent phase, where the controller has
already been fixed. Since the feedback controller is designed before
the triggering mechanism, it is difficult, if not impossible, to
obtain an optimal design of the combined feedback controller and
triggering mechanism in the sense that the minimum number
of control executions is achieved while guaranteeing closed-loop
stability and a desired level of performance.

Regarding (ii), only a few available ETC/STC methods provide
quantitative analysis tools for control performance, such as L2-
gains, quadratic cost, H2 type of criteria, and so on. For instance,
in Donkers and Heemels (2012) one can analyze the ETC/STC loop
a posteriori and evaluate what the L∞-gain is, and clearly by do-
ing this for various choices of the triggering mechanism one can
(indirectly) synthesize a controller with a good closed-loop L∞-
gain (in balancewith a reasonable communication usage) based on
an iterative design process. A similar procedure can be applied for
theL2-gain, see, e.g., Wang and Lemmon (2009). Alternatively, us-
ing Lunze and Lehmann (2010) and Yook et al. (2002), one can tune
the parameters of the event-triggering condition (once the con-
troller is fixed) to obtain a desirable ultimate bound on the state.
In addition, a few ETC and STC methods exist that aim at mini-
mizing a criterion involving besides control cost also communica-
tion cost (Cogill, 2009; Li & Lemmon, 2011; Molin & Hirche, 2013).
However, in most cases they do not provide guarantees in terms
of standard (LQR, L2, H2) control cost (i.e., without the presence
of communication cost), and, in fact, due to the resulting absolute
threshold in the event-triggering mechanism, these control cost
are typically not finite. The case of continuous-time linear systems
with a quadratic performance measure (LQR) is studied in Velasco
et al. (2011) and Yepez, Velasco, Marti, Martin, and Fuertes (2011).
Both papers aim at arriving at ETC laws that yield the same cost as
the optimal LQR controller, but require less communication than
the continuously updating optimal LQR controller. The main idea
behind the approach is to maximize the time until the next control
value update, considering that the rest of the (future) controller
executions will be according to standard periodic time-triggered
updates. In Velasco et al. (2011), the controller design is emulation-
based, whereas Yepez et al. (2011) studies a co-design method for
both the feedback law and the triggering condition. However, no
formal guarantees are given in these papers about the true cost

realized by the ETC implementation, and the framework in Velasco
et al. (2011) and Yepez et al. (2011) does not offer a possibility to
‘‘trade’’ performance for less communication resource usage.

The main contribution of the present paper is a novel STC strat-
egy for discrete-time linear systems in the presence of stochastic
disturbances, addressing the issues (i) and (ii) and allowing to trade
guaranteed performance levels with utilization of communication
resources. The contribution of this paper is threefold:

• the methods guarantee a desired performance level based on
quadratic (discounted) cost without an iterative design process.
In fact, the presented strategy aims at reducing the use of com-
munication resources, while still guaranteeing a prespecified
sub-optimal level of performance;

• for the considered control problem, we solve a co-design prob-
lem by jointly designing the feedback controller and the trig-
gering mechanism;

• by means of a numerical example, we demonstrate quantita-
tively that aperiodic control can outperform periodic control
when both control performance and communication cost are
important.

1.1. Nomenclature

Let R and N denote the set of real numbers and the set of non-
negative integers, respectively. The notation N≥s and N[s,t) is used
to denote the sets {r ∈ N | r ≥ s} and {r ∈ N | s ≤ r < t},
respectively, for some s, t ∈ N. The inequalities ≺, ≼, ≻ and ≽

are used for matrices, i.e., for a square matrix X ∈ Rn×n we write
X ≺ 0, X ≼ 0, X ≻ 0 and X ≽ 0 if X is symmetric and, in addition,
X is negative definite, negative semi-definite, positive definite
and positive semi-definite, respectively. Sequences of vectors are
indicated by bold letters, e.g., u = (u0, u1, . . . , uM) with ui ∈

Rnu , i ∈ {0, 1, . . . ,M}, where M ∈ N ∪ {∞} will be clear from
the context. Let X and Y be random variables. The expected value
of X is denoted by E(X) and the conditional expectation of X given
Y is denoted E[X | Y ]. The trace of a matrix A is denoted by tr(A).

2. Self-triggered linear quadratic control

In this section, we provide the problem formulation and the
general setup for the self-triggered control strategy. We consider
the control of a discrete-time LTI system given by

xt+1 = Axt + But + Ewt , (1)

for t ∈ N, where xt ∈ Rnx is the state, ut ∈ Rnu is the input
and wt ∈ Rnw is the disturbance, respectively, at discrete time
t ∈ N. We assume that the pair (A, B) is controllable and that
wt , t ∈ N, are independent and identically distributed random
vectors (not necessarily Gaussian distributed) with E[wt ] = 0 and
E[wtw

⊤
t ] = I , t ∈ N, where I ∈ Rnw×nw is the identity matrix. In

this section, we are interested in control strategies that guarantee
a certain control performance in terms of a discounted quadratic
cost function

J =

∞
t=0

E

αt x⊤

t Qxt + 2x⊤

t Sut + u⊤

t Rut


| x0

, (2)

involving the weighting matrices Q , R and S, where

Q S
S⊤ R


≻ 0.

The discount factor 0 < α ≤ 1 is assumed to be strictly less than
one when E ≠ 0 to assure that (2) is bounded. Note that E = 0
and α = 1 allow us to consider an LQR-like framework. If we
assume that the state is available at every t ∈ N and also that
the control input can be updated at every t ∈ N, it is well known
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