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A B S T R A C T

We propose a physiologically based intonation model using perceptual relevance. Motivated by speech synthesis
from a speech-to-speech translation (S2ST) point of view, we aim at a language independent way of modelling
intonation. The model presented in this paper can be seen as a generalisation of the command response (CR)
model, albeit with the same modelling power. It is an additive model which decomposes intonation contours into
a sum of critically damped system impulse responses. To decompose the intonation contour, we use a weighted
correlation based atom decomposition algorithm (WCAD) built around a matching pursuit framework. The al-
gorithm allows for an arbitrary precision to be reached using an iterative procedure that adds more elementary
atoms to the model. Experiments are presented demonstrating that this generalised CR (GCR) model is able to
model intonation as would be expected. Experiments also show that the model produces a similar number of
parameters or elements as the CR model. We conclude that the GCR model is appropriate as an engineering
solution for modelling prosody, and hope that it is a contribution to a deeper scientific understanding of the
neurobiological process of intonation.

1. Introduction

We are interested generally in speech to speech translation (S2ST).
At the time of writing, S2ST is becoming a reality; with both research
(e.g., the U-STAR consortium1) and commercial (e.g., Skype2) systems
being available. This is a consequence of the component technologies—
automatic speech recognition (ASR), machine translation (MT) and text
to speech synthesis (TTS) — becoming quite mature.

In the context of ASR, especially when the goal is to produce text,
prosody is normally ignored. By contrast, in the context of TTS, pro-
duction of appropriate prosody is necessary to approach the naturalness
of human speech. Although some applications using TTS do not ne-
cessarily require a human sounding voice, many of them would be more
attractive if the machine— or communication intermediary — was able
to produce natural sounding speech.

In the case of S2ST, not only is a natural voice required, but also one
that conveys the intent and nuances of the speaker. This includes the
ability to correctly emphasise the words, or groups of words, according
to what has been said in the source language. Of course, this places
requirements on the MT component, be it a simple mapping or

something more complex (Do et al., 2015; Anumanchipalli et al., 2012).
In the present study, we focus on intonation modelling. Intonation

modelling can be seen as finding a “good” representation of the in-
tonation signal. The challenges are then: What should be this re-
presentation? and, How can its parameters be extracted?

We recently proposed a model which can be both extracted from a
speech signal and recreated in a synthetic speech signal (Honnet et al.,
2015). The model is physiologically based and can be seen as a gen-
eralisation of the CR model, although differing in some aspects in its
definition. Inspired by the work of Kameoka et al. (2010) on the pre-
diction of the CR parameters, we define local components of intonation
as impulse responses to critically damped systems. Our first approach
consisted of extracting parameters with a standard matching pursuit
algorithm, followed by a selection of extracted atoms based on their
perceptual relevance. This work was concerned with minimising the
reconstruction error and investigating different system orders for the
model components.

In a second iteration (Gerazov et al., 2015), the perceptual re-
levance was integrated directly in the extraction process by modifying
the cost function of the matching pursuit algorithm, yielding optimal
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local decomposition with respect to the perceptual measure used. The
ability of the model to reach high perceptual similarity was in-
vestigated, and a comparison with the standard CR model was pro-
posed, using a perceptually relevant objective measure.

Both approaches were validated on a rather small but multilingual
dataset. In the present paper, we take the opportunity to consolidate
our previous work, giving a more in-depth description of the model
with a discussion on its physiological credibility; a detailed procedure
for extracting parameters and a comparison with the standard CR
model are also presented. Additionally, we present a more thorough
evaluation, done on a much larger scale with a variety of speakers and
languages. Some differences in the cost function for extraction are also
introduced in Section 4.4.

In the following sections, after a review of background material, we
expand the motivation for our model in terms of muscle modelling and
put it in the context of the CR model. We go on to describe how the
extraction can be done automatically, and in terms of perceptual me-
trics known to the linguistics community. Experiments are presented
that evaluate the plausibility of the model and place it in the context of
the state of the art.

2. Background

The need for correct intonation in TTS systems as well as the more
general study of intonation have motivated the creation of different
intonation and / or prosody models. In the context of TTS, adaptive
systems — almost exclusively statistical parametric speech synthesis
(SPSS) — are of great interest in the research community. The current
state of the art systems for SPSS are based on hidden Markov models
(HMMs) of Tokuda et al. (2002b) and Zen et al. (2009). HMM-based
speech synthesis deals with intonation in a framewise manner; each
frame from the training speech database has a value — or a null value
in the case of an unvoiced frame — and HMM states are trained using
these values. At synthesis time, F0 is generated frame by frame, based
on the HMM parameters.

Decision trees allow clustering of different features using different
tree structure, thus one can expect that when clustering contextual
features with respect to F0, suprasegmental information in the label will
have more impact than segmental information. However, this results in
a speech often qualified as “flat” or lacking expressivity, which is due to
the oversmoothing of HMMs (Toda and Tokuda, 2005).

There are three main ways of tackling the flatness of HMM-based
synthesis at the intonation level: i) use a different representation of F0 in
the HMMs, ii) postprocess the synthetic intonation coming from HMMs,
or iii) use an external prosody model that combines with other HMM
parameters.

In the early stages of HMM-based synthesis, a multi-space prob-
ability distribution (MSD)-HMM was developed by Tokuda et al.
(2002a) and became a standard way of handling the fact that speech
can be voiced or unvoiced. More recently, some work was done using
continuous F0 and it was shown that continuous F0 improves the per-
ceived naturalness of synthesis (Yu and Young, 2011; Latorre et al.,
2011). This was further improved by hierarchical modelling using a
continuous wavelet decomposition to separate the different levels of
variation in F0 (Suni et al., 2013). In this work, the authors exploit the
multi stream architecture of an HMM-based TTS framework to cluster
these different temporal scale components with different decision trees.

In the second category, an example of what can be done to improve
the output of HMM synthesis is given by (Hirose et al. 2011, 2012).
Based on the command response (CR) model of Fujisaki and
Nagashima (1969), the idea is to estimate the F0 model commands from
linguistic information, and then optimise them according to the F0
generated by HMMs. By modifying the estimated parameters, it be-
comes possible to increase the expressivity of the synthetic speech.
Another attempt to integrate the CR model in HMM-based TTS was
made by Hashimoto et al. (2012), where parameterised F0, in respect to

the CR model, was used for training the HMM intonation features. This
improved the quality of the synthetic speech as the model smoothed the
F0 contour before training.

The external prosody models, or intonation models are numerous.
They can roughly be divided into models that: i) model the surface pitch
contour, and ii) integrate the underlying physiological mechanisms of
pitch production. Most intonation models fall into the first group. The
Tone and Break Indices (ToBI) model (Silverman et al., 1992) is not a
true surface model, nor is it a physiological one. It is linguistically fo-
cused, but is underdetermined and contains annotation and pitch
synthesis ambiguities. On the other hand, the Tilt model (Taylor, 2000)
is specially tailored for automatic parameter extraction and pitch
synthesis. It describes the pitch contour as a sequence of events with
specific shapes that can be automatically extracted with an obvious
resynthesis step. The INSINT (INternational Transcription System for
INTonation) model (Hirst et al., 2000) expands on ToBI and allows for
automatic parameter extraction. It models the MOMEL (MOdélisation
de MELodie) stylised (Hirst and Espesser, 1993) intonation contour as a
sequence of specific F0 target points. The General Superpositional
Model of Intonation (Van Santen and Möbius, 2000), models the pitch
contour decomposing it into a sum of a microprosodic segmental per-
turbation, an accent and a phrase curve. Finally, the Superposition of
Functional Contours (SFC) model (Bailly and Holm, 2005), is a data
driven approach based on the superposition of intonation prototypes
that are directly linked to linguistic information through the use of
neural networks.

Only a few models actually try to explain the intonation by in-
vestigating its production aspect. The most popular model in this ca-
tegory is the command response (CR) model of Fujisaki and
Nagashima (1969). This model decomposes the intonation into additive
physiologically meaningful components. The CR model is attractive for
two reasons:

1. it has a physiological explanation which tries to account for the
underlying mechanisms behind intonation production, and

2. it has a mathematical form, which makes it possible to parameterise.

Extracting the model parameters from an F0 contour is not trivial,
but the opposite resynthesis operation is straightforward.

The qTA (quantitative Target Approximation) model (Prom-
on et al., 2009), expands on the CR model, and uses pitch targets as
input to the physiological model of pitch production. The StemML
(Kochanski et al., 2003), on the other hand, imposes physiological
constraints of smoothness and communication constraints specified by
target accent templates to the modelling process.

3. Physiologically based intonation modelling

3.1. Motivation

In mimicking the abilities of humans in a machine, it is natural to
try to mimic human physiological processes. It is certainly not neces-
sary; this is evidenced by the fact that there are many speech recogni-
tion and synthesis methods that use physiologically implausible me-
chanisms (such as Markov models and windowed frames). However,
doing so has two attractive possibilities: The first is the main goal of
technological advancement; the second is one of scientific under-
standing of the underlying processes.

Further, it is clear that there are no fundamental differences be-
tween speakers of different languages. We may hence reasonably expect
a physiological model not to be language dependent.

3.2. Sources of physiological variation in F0

A detailed analysis of intonation production is given by
Strik (1994). In this work, using electromyographic (EMG) recordings
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