
Automatica 48 (2012) 3089–3097

Contents lists available at SciVerse ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Brief paper

Notes on sliding mode control of two-level quantum systems✩

Daoyi Dong a,b,1, Ian R. Petersen a

a School of Engineering and Information Technology, University of New South Wales at the Australian Defence Force Academy, Canberra, ACT 2600, Australia
b Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China

a r t i c l e i n f o

Article history:
Received 17 November 2011
Received in revised form
7 May 2012
Accepted 24 June 2012
Available online 13 September 2012

Keywords:
Quantum control
Sliding mode control
Bounded uncertainty
Periodic projective measurement

a b s t r a c t

In [Dong, D. and Petersen, I.R. (2012). Sliding mode control of two-level quantum systems. Automatica,
48, 725–735], a sliding mode control approach has been proposed for two-level quantum systems to
deal with bounded uncertainties in the system Hamiltonian. This paper further extends these results
in two directions. One extension is to consider the effect of uncertainties during the process of driving
the system’s state back to the sliding mode domain from outside and we propose two approaches to
accomplish this control task. The other extension generalizes the previous design approach to consider
uncertainties described as perturbations in the free Hamiltonian.

© 2012 Elsevier Ltd. All rights reserved.

The developing control theory for quantum systems is be-
coming an active research area (D’Alessandro, 2007; Dong & Pe-
tersen, 2010; Rabitz, de Vivie-Riedle, Motzkus, & Kompa, 2000).
Several useful tools from classical control theory including opti-
mal control theory, learning control and feedback control have
been introduced to control systemanalysis anddesign for quantum
systems (Altafini, 2007; Bolognani & Ticozzi, 2010; Boscain & Ma-
son, 2006; Chia & Wiseman, 2011; D’Alessandro & Dahleh, 2001;
Doherty & Jacobs, 1999; Khaneja, Brockett, & Glaser, 2001; Nurdin,
James, & Petersen, 2009; Rabitz et al., 2000; Ticozzi & Viola, 2009;
Wiseman & Milburn, 2010; Zhang & James, 2011; Zhang, Wu, Li, &
Tarn, 2010). In particular, there exist many types of uncertainties
(including noise, disturbance, decoherence, etc.) for most practi-
cal quantum systems and the robust control problem for quantum
systems has been recognized as a key issue in developing practi-
cal quantum technology (Doherty et al., 2000; Dong, Lam, & Pe-
tersen, 2010; Pravia et al., 2003; Yamamoto&Bouten, 2009; Yi, Cui,
Wu, &Oh, 2011; Zhang & Rabitz, 1994). Severalmethods have been
proposed for the robust control of quantum systems. For example,
James, Nurdin, and Petersen (2007) have formulated and solved
a quantum robust control problem using the H∞ method for lin-
ear quantum stochastic systems. D’Helon and James (2006) used
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the small gain theorem to analyze the robustness of a quantum
feedback network. Li and coworkers (Li, 2011; Li & Khaneja, 2009)
presented an ensemble control method which could be looked on
as an open-loop robust control approach for quantum systems.
In Dong and Petersen (2009, 2012), we developed a sliding mode
control approach to enhance the robustness of quantum systems
with uncertainties in the system Hamiltonian. In particular, two
approaches based on sliding mode design have been proposed for
the control of quantum systems in Dong and Petersen (2009) and
potential applications of sliding mode control to quantum infor-
mation processing have been presented. Dong and Petersen (2012)
presents a detailed sliding mode control method for two-level
quantum systems to deal with bounded uncertainties in the sys-
tem Hamiltonian. This paper focuses on the sliding mode control
of two-level quantum systems and extends the results in Dong
and Petersen (2012) to deal with additional types of uncertainties
(Dong & Petersen, 2011).

Sliding mode control generally includes two main steps:
selecting a sliding surface (sliding mode) and controlling the
system’s state to and maintaining it in a sliding mode domain.
We select an eigenstate |0⟩ of the free Hamiltonian of a two-level
quantum system as a sliding mode. Being in the sliding mode
guarantees that the quantum system has the desired dynamics.
Furthermore, we also define a sliding mode domain D in which
the system’s state has a small probability to collapse out of D

when making a measurement. Then, such a sliding mode control
problem includes two important subtasks: (I) design a control
law to maintain the system’s state in D; and (II) design a control
law to drive the system’s state back to D if a measurement
operation takes it away from D . In Dong and Petersen (2012),

0005-1098/$ – see front matter© 2012 Elsevier Ltd. All rights reserved.
doi:10.1016/j.automatica.2012.08.020

http://dx.doi.org/10.1016/j.automatica.2012.08.020
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
mailto:daoyidong@gmail.com
mailto:i.r.petersen@gmail.com
http://dx.doi.org/10.1016/j.automatica.2012.08.020


3090 D. Dong, I.R. Petersen / Automatica 48 (2012) 3089–3097

we assumed that there exist no uncertainties during the control
phase (II) and proposed a Lyapunov-based approach to accomplish
such a subtask (Altafini, 2007; Kuang & Cong, 2008; Mirrahimi,
Rouchon, & Turinici, 2005; Wang & Schirmer, 2010). This paper
first proposes two controller design approaches (dependent
on different situations) to accomplish subtask (II) where the
uncertainties are not ignored. For subtask (I), assuming that there
are no uncertainties which are described as perturbations in the
free Hamiltonian, (Dong & Petersen, 2012) presented a periodic
measurement based method to guarantee the desired robustness
and also gave an approach to design the measurement period.
In this paper, we give modified measurement periods which
need to be used when we consider uncertainties described as
perturbations in the free Hamiltonian.

This paper is organized as follows. Section 1 introduces the
sliding mode control problem for two-level quantum systems. In
Section 2, we present a controller design method to accomplish
subtask (II) taking into account uncertainties. Section 3 presents
modified measurement periods when we consider uncertainties
described as perturbations in the free Hamiltonian. Concluding
remarks are given in Section 4.

1. Sliding mode control of two-level quantum systems

The quantum control model under consideration can be
described as (we have assumed h̄ = 1 by using atomic units)

i|ψ̇(t)⟩ = (H0 + H∆ + Hu)|ψ(t)⟩,
|ψ(t = 0)⟩ = |ψ0⟩,

(1)

where the quantum state |ψ(t)⟩ corresponds to a two-dimensional
unit complex vector in a Hilbert space, the free Hamiltonian
H0 =

1
2σz , the uncertainties H∆ = δ(t)Iz + εx(t)Ix + εy(t)Iy (δ(t),

εx(t), εy(t) ∈ R), the control Hamiltonian Hu =


k=x,y,z uk(t)Ik,
(uk(t) ∈ R, Ik =

1
2σk) and the Pauli matrices σ = (σx, σy, σz) take

the following form:

σx =


0 1
1 0


, σy =


0 −i
i 0


, σz =


1 0
0 −1


. (2)

Furthermore, we assume that the uncertainties are bounded:

|δ(t)| ≤ δ (δ ≥ 0),

ε2x (t)+ ε2y (t) ≤ ε (ε > 0).

In practical applications, we often use the density operator ρ to
describe the quantum state of a quantum system. For a two-level
quantum system, the state ρ can be represented in terms of the
Bloch vector r = (x, y, z) = (tr{ρσx}, tr{ρσy}, tr{ρσz}):

ρ =
1
2
(I + r · σ). (3)

The dynamical equation of ρ can be written as

ρ̇ = −i[H, ρ] (4)

where [A, B] = AB − BA. After we represent the state ρ with the
Bloch vector, the pure states (satisfying ρ = |ψ⟩⟨ψ |) of a two-level
quantum system correspond to the surface of the Bloch sphere,
where (x, y, z) = (sin θ cosϕ, sin θ sinϕ, cos θ), θ ∈ [0, π], ϕ ∈

[0, 2π ]. An arbitrary pure state |ψ⟩ for a two-level quantum
system can be represented as

|ψ⟩ = cos
θ

2
|0⟩ + eiϕ sin

θ

2
|1⟩, (5)

where |0⟩ and |1⟩ are eigenstates of H0.
To deal with the uncertainties H∆, Dong and Petersen (2012)

have proposed a sliding mode control approach where the sliding
mode S is defined as a functional of the state |ψ⟩ and the

Hamiltonian H; i.e., S(|ψ⟩,H) = 0. In particular, the eigenstate |0⟩
has been identified as the slidingmode.We further define a sliding
mode domain D = {|ψ⟩ : |⟨0|ψ⟩|

2
≥ 1 − p0, 0 < p0 < 1}, where

p0 is a given constant (Dong & Petersen, 2012). The definition
of the sliding mode domain implies that the system’s state has
a probability of at most p0 (which we call the probability of
failure) to collapse out of D whenmaking ameasurement with the
measurement operator σz . We expect to drive and then maintain
a two-level quantum system’s state in a sliding mode domain D .
However, the uncertainties H∆ may take the system’s state away
from D . Since a measurement operation unavoidably makes the
measured system’s state collapse, we expect that the control laws
designedwill guarantee that the system’s state remains inD except
that a measurement operation may take it away from D with a
small probability (not greater than p0).

In Dong and Petersen (2012), we divide the control task under
consideration into three main subtasks. Since we can make a
measurement on any initial state to drive it into |0⟩ or |1⟩, we
only consider the following two important subtasks: (I) design a
control law to maintain the system’s state in D; and (II) design a
control law to drive the system’s state back to D if a measurement
operation takes it away from D . Ref. Dong and Petersen (2012)
ignores the uncertainties H∆ during control process (II) and
the uncertainties δ(t)Iz (i.e., there we assumed δ(t) ≡ 0) for
subtask (I). This paper will relax these two assumptions. First, we
propose two controller design approaches for subtask (II) with
uncertainties. To simplify the problem of controller design, we
employ the measurement periods in Dong and Petersen (2012).
Then we present modified measurement periods to guarantee the
desired robustness for subtask (I) when δ(t)Iz (|δ(t)| ≤ δ) exists.

2. Control design for subtask (II) with uncertainties

In Dong and Petersen (2012), we have proposed a Lyapunov-
based design approach to drive the quantum system’s state back to
the sliding mode domain when we ignore the uncertainties during
the control process. This section will consider the case where the
uncertainties are not ignored and propose a simple method to
accomplish subtask (II). For an arbitrary initial state, we first make
a projective measurement to drive it to |0⟩ or |1⟩. The general
control algorithm used in this section can be described as follows:
(i) select an eigenstate |0⟩ of H0 as a sliding mode S(|ψ⟩,H) = 0,
and define the sliding mode domain as D = {|ψ⟩ : |⟨0|ψ⟩|

2

≥ 1 − p0, 0 < p0 < 1}. (ii) For the initial state |1⟩, design a
control law to drive the system’s state into D using information
on ε. (iii) For given p0 and ε, design the period T for periodic
projectivemeasurements. (iv) For an initial state,make a projective
measurement, then repeat the following operations. If the result
is |0⟩, make periodic projective measurements with a period T
to maintain the system’s state in D . If the measurement result
corresponds to |1⟩, use the corresponding control law to drive the
state back into D .

In the control algorithm, the design of a control law in (ii)
and the measurement period T in (iii) are two important tasks.
We use the results of Dong and Petersen (2012) to design the
measurement period T . Hence, this section focuses on the design
of a control law in (ii). In the following, we consider two situations
H∆ = ε(t)Iξ (ξ = x or y) and H∆ = ε(t)(sinϕIx − cosϕIy)
(where ϕ ∈ [0, 2π ] is a constant). H∆ = ε(t)Iξ is a special case of
H∆ = ε(t)(sinϕIx − cosϕIy). The effect of a noisy environment
on many practical systems in superconducting nanocircuits and
solid-state nuclear magnetic resonance can be approximated as an
uncertainty in the form of these uncertainties (e.g., see Möttönen,
de Sousa, Zhang, & Whaley, 2006, Paladino, Faoro, Falci, & Fazio,
2002, Pravia et al., 2003). Also, the systematic errors in quantum
operations considered in Brown, Harrow, and Chuang (2004) are a
special case of H∆ = ε(t)(sinϕIx − cosϕIy).
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