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a b s t r a c t

We study attitude control of rigid bodies on quaternion coordinates under threemathematically different
perspectives, depending on how the system dynamics are assumed to evolve. In the first case, we suppose
that one equilibriumpoint is chosen a priori and a continuous controller is used under the assumption that
the rigid body always spins in the same direction. In the second case, we relax the assumption that the
sense of rotation is constant. Finally, a third scenario is considered in which hybrid (switching) control
is used to choose the direction in which to spin, that is, both equilibria are continuously considered with
regard to less energy consumption. It is showed that each of three scenarios must be treated in a different
theoretical setting. A comparative study in simulations is also provided.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The attitude of a rigid body may be described by so-called
quaternions, redundant coordinates on the space SO(3). Quater-
nions determine any point on the sphere and include one ‘‘extra’’
coordinate which indicates the sense of rigid-body rotations. They
are redundant as the two poles of the sphere correspond to the
same physical posture of the body yet, mathematically they ac-
count for two equilibria. This brings especial difficulties to the sta-
bility analysis of attitude-controlled rigid bodies.

From a practical viewpoint, certain control actions may cause
the body to rotate almost a full revolution to achieve a posture
which is close to the initial one, i.e., to take a longer path. From
an analytical view-point the two equilibria must be considered as
different hence, one may not expect to achieve ‘‘global’’ stability
properties in closed-loop. Besides, the adjective ‘‘global’’ or ‘‘in the
whole’’ pertains to the case when the states are elements of Rn—
see Hahn (1967). See also Loría and Panteley (2006) for precise
definitions of stability and discussions.

To deal with multiple equilibria in control design there are two
evident alternatives: to choose a target equilibrium before starting
a maneuver, or not. If a target equilibrium is fixed before the

✩ The material in this paper was not presented at any conference. This paper was
recommended for publication in revised formbyAssociate Editor Alessandro Astolfi
under the direction of Editor Andrew R. Teel.

E-mail addresses: runsch@hin.no (R. Schlanbusch), loria@lss.supelec.fr
(A. Loria), pjn@hin.no (P.J. Nicklasson).
1 Tel.: +33 1 69 85 1724; fax: +33 1 69 85 1765.

maneuver the control design relies on thehypothesis that the sense
of rotation does not change. Mathematically, this is tantamount to
assuming that one of the quaternion states does not change sign. In
Kristiansen, Nicklasson, and Gravdahl (2008) the authors proposes
a controller which steers a spacecraft to the equilibrium point
closest to the initial posture. However, the shortest-path rotation
is not necessarily optimal in terms of use of input ‘‘energy’’—for
instance, fuel consumption in the context of spacecraft control, if
initial velocities are relatively high and in direction opposite to
the desired rotation. See Schlanbusch, Kristiansen, and Nicklasson
(2010a) for a study of this aspect.

The freedom of not fixing the reference equilibrium a priori
comes at the price of the increased complexity. See for instance
Casagrande, Astolfi, and Parisini (2008) on control of an under-
actuated non-symmetric rigid body and Mayhew, Sanfelice, and
Teel (2009) where the authors present two quaternion-based
hybrid controllers: one is derived from an energy-based Lyapunov
function which entails a switch in the rotational direction only
when the rotational error is above π rad and one based on
backstepping design which also considers the angular velocity
errors to determine whether switching is needed.

In this paper we analyze the three following scenarios

Scenario 1.— One equilibrium is considered and is chosen a priori;
Scenario 2.— Two equilibria are considered, one ofwhich is chosen

a priori;
Scenario 3.— Two equilibria are considered, none of which is

chosen a priori.

For comparison, we use in the three cases a controller that is
inspired from Slotine and Li (1988). However, the controller that
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we propose is adapted to the rigid body in quaternion space
hence, it is different from that in the latter reference, which
applies to robot manipulators in joint space (R2n).2 In the first
case, the controller is showed to guarantee asymptotic stability
in the large provided that the sense of rotation is constant. In the
second case, we add to the previous controller a switching rule
which yields only one potential initial switch and we provide a
proof of asymptotic stability using density functions—see Rantzer
(2001). We show asymptotic stability for all initial conditions on
the sphere except for a zero-measure set. In the third case we
incorporate a switching law, the closed-loop system is hybrid and
we use the framework of Sanfelice, Goebel, and Teel (2007) to
analyze the closed-loop system.

Simulation results are presented with the aim at showing that
a proper design of the switching law may lead to performance
improvement.

The rest of the paper is organized as follows. In Section 2
we describe the quaternion-based model of a rigid-body; in
Section 3 we present our main results; in Section 4 we present
a comparative simulations study and we conclude with some
remarks in Section 5.

2. Rigid-body model

Attitude control consists in achieving any rigid-body orienta-
tion relative to a fixed frame, independent of that attached to the
body itself. Perhaps the best manner to explain the kinematics and
dynamics is to consider the attitude of a satellite relative to the
Earth. We denoted the body frame as F b, and is located at the cen-
ter of mass of the rigid body, and its basis vectors are aligned with
the main axis of inertia and the inertia frame as F i.

2.1. Quaternions

We recall that the special orthogonal group of order three
corresponds to the set SO(3) of orthonormal rotation matrices R,
SO(3) = {R ∈ R3×3

: R⊤R = I, det(R) = 1},
where Idenotes the identitymatrix. A rotationmatrix for a rotation
θ about an arbitrary unit vector kmay be angle-axis parameterized
as in Egeland and Gravdahl (2002), i.e.,

Rk,θ = I + S(k) sin(θ) + S2(k)(1 − cos(θ)). (1)
Then, the coordinate transformation of a vector r from frame a to
frame b is written as rb = Rb

ar
a. The rotation matrix in (1) can be

expressed by an Euler parameter representation as
R = I + 2ηS(ϵ) + 2S2(ϵ),
where the matrix S(·) is the cross product operator, i.e.,

S(ϵ) =

 0 −ϵz ϵy
ϵz 0 −ϵx

−ϵy ϵx 0


, ϵ =


ϵx
ϵy
ϵz


.

Quaternions are used to parameterize elements of SO(3). The unit
quaternion is defined as q = [η, ϵ⊤

]
⊤

∈ S3 = {x ∈ R4
:

x⊤x = 1}, where η = cos(θ/2) ∈ R is ‘the scalar part’ and
ϵ = k sin(θ/2) ∈ R3 is ‘the vector part’. The set S3 forms a
group with quaternion multiplication, which is distributive and
associative, but not commutative. The inverse rotation of a given
attitude is performed via the inverse conjugated q̄ = [η, −ϵ⊤

]
⊤.

The difference between two postures is given by the quaternion
product,

q1 ⊗ q2 =


η1η2 − ϵ⊤

1 ϵ2
η1ϵ2 + η2ϵ1 + S(ϵ1)ϵ2


.

We stress that the quaternion representation is redundant. Notice
that q and −q represent the same physical attitude however, the

2 We remark that the choice of the controller is unimportant, i.e., the same results
may be obtained for many other controllers inspired from robot control literature.

two postures differ mathematically by a 2π rotation about an
arbitrary axis. As a consequence, the mathematical model has two
equilibria and this must be considered when studying stability.

2.2. Kinematics and dynamics

The time derivative of the rotation matrix is

Ṙa
b = S


ωa

a,b


Ra
b = Ra

bS

ωb

a,b


,

where ωa
a,b ∈ R3 is the angular velocity of a frame F b relative to a

frame F a, expressed in frame F a. Correspondingly, the kinematic
equation is

q̇ = T(q)ω, T(q) =
1
2


−ϵT

ηI + S(ϵ)


∈ R4×3.

The rigid body dynamics is derived from Euler’s moment equation,
which describes the relation between applied torque and angular
momentum on the rigid body, i.e.,

Jω̇ = −S(ω)Jω + τ, (2)

where ω = ωb
i,b is the angular velocity of the body frame F b

relative to an inertia frameF i, expressed in the body frame; τ ∈ R3

is the total torque working on the body frame,3 and J ∈ R3×3
=

diag{Jx, Jy, Jz} is the inertia matrix.

3. Attitude control on quaternion coordinates

The attitude control problem consists in making the actual
attitude converge towards a given reference attitude qd satisfying
the kinematic equation

q̇d = T(qd)ωd.

Assumption 1. (a) The desired attitude qd, the desired angular
velocityωd and the desired angular acceleration ω̇d are all bounded
functions; (b) the desired reference is such that the quaternion
errors satisfy the quaternion constraint ϵ̃⊤ϵ̃ = 1 − η̃2.

The quaternion error is given by q̃ = q̄d ⊗ q and yields q̃ =

[η̃, ϵ̃⊤
]
⊤ with η̃ ∈ [−1, 1], by definition. The control goal is to steer

ϵ̃(t) to zero under Assumption 1. Correspondingly, in view of the
quaternion constraint, η̃ must converge either to +1 or to −1.

Now, the error kinematic equation is given by

˙̃q = T(q̃)eω, (3)

where eω = ω − ωd. We remark that due to the redundancy of the
quaternion coordinates (3) has two equilibria, which we represent
by (q̃+, eω) = ([1 0], 0) and (q̃−, eω) = ([−1 0], 0) where 0 =

[0 · · · 0]⊤ is of appropriate dimensions. For the purpose of analysis
we translate the problem of stabilizing an equilibrium to that of
stabilizing the origin. For this, we define the attitude error vector
eq+ = [1 − η̃, ϵ̃⊤

]
⊤ for the ‘‘positive’’ equilibrium and use eq− =

[1+ η̃, ϵ̃⊤
]
⊤ for the ‘‘negative’’ equilibrium. The kinematic relation

can then be expressed as

ėq± = Te(eq±)eω, where Te(eq±) =
1
2


±ϵ̃⊤

η̃I + S (ϵ̃)


. (4)

In the first two scenarios described below, the control strategy
relies on choosing a target equilibrium before the manoeuvre.
In the first case, we assume that the body’s sense of rotation is

3 Typically, in the context of attitude control of spacecraft, τ contains the control
inputs and external disturbances. The latter are not considered in this paper.



Download English Version:

https://daneshyari.com/en/article/696091

Download Persian Version:

https://daneshyari.com/article/696091

Daneshyari.com

https://daneshyari.com/en/article/696091
https://daneshyari.com/article/696091
https://daneshyari.com

