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ABSTRACT

In this paper the estimation and attitude control problem of a rigid body spacecraft system with
loss of observation is addressed. While a number of estimation algorithms are widely utilised in
real-time applications, most of them are inadequate in the event of loss of observation as they are
fundamentally based on the plant dynamics relying heavily on the measured output data. To overcome
this shortcoming, a compensated closed-loop estimation algorithm is suggested in this work and is
implemented in a spacecraft system with intermittent measured signals. The compensated observation
signal, reconstructed using a linear prediction subsystem, is supplied at the measurement update step
in the Kalman filtering. To limit the number of observations utilised in the linear prediction filter, a
minimum mean square error based scheme is provided to obtain the size of linear prediction filter order.
A Lyapunov-stability based output feedback control scheme is employed for the stabilisation problem.
The simulation results demonstrate the effectiveness of the compensated algorithm wherein the aim is
tackling the estimation problem subject to loss of measurements for the spacecraft application.

System identification

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Attitude estimation is one of the vital tasks within aeronautical
applications and is carried out effectively using different configura-
tions of sensors, e.g. accelerometers or inclinometers, gyroscopes,
magnetometers and star trackers, to name but a few. The use of
these measurement devices depends on the application for which
they are applied (Wertz, 1990). For example, during the low accel-
eration phase, accelerometers are adopted for most of the robotics
applications for the determination of attitude parameters (Ellery,
2000). For autonomous hovering systems (i.e. helicopters) that are
capable of performing vertical take-off or landing, both high and
low accelerometers are used for estimating the attitude (Pflimlin,
Soueres, & Hamel, 2004).

While many estimation algorithms, including linear and nonlin-
ear Kalman filtering, have been introduced in the literature (Ander-
son & Moore, 1979; Joseph, Kasper, & Arthur, 1974; Kailath, 1968;
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Simon, 2006; Zarchan, 2005) and a significant number of them are
implemented in real-time applications (Grewal & Andrews, 2008;
Kodri¢, 2010) they are prone to fail in the event of a loss of obser-
vation due to their extensive reliability on the measured output
data (Kar, Sinopoli, & Moura, 2012; Khan, Fekri, & Gu, 2010a,b; Si-
nopoli et al., 2004). In many cases, measurement losses may lead to
catastrophic and disastrous effects, such as loss of human life, eco-
nomic collapse and environmental pollution (Heemink & Segers,
2002). To overcome such shortcomings, it is important to design
an estimation algorithm which is robust to observation losses. It
should be noted that “robustness to loss of observation” is a nec-
essary condition (but not sufficient) for being fault-tolerant to sen-
sor failures. In other words, an estimator, which is designed to be
fault-tolerant to sensor failures, may still crash in the event of full
observation loss. Therefore, it remains an open problem to perform
the system state estimation when sensors are not providing any
measured data for a limited period of time. It is also worthwhile
to emphasise that the problem of loss of output data is of signifi-
cant interest in applications wherein output feedback control sys-
tems effectively rely upon the measured output signals. Hence, it
is a challenging task to perform a precise estimation of the output
in the event of measurement loss in the output feedback control
systems that are used in a number of applications.

The spacecraft dynamics mostly rely on ground-based data
processing and communication, where delay is inherent in
calculations/operations (Micheli, 2001; Patton, Uppal, Simani, &
Polle, 2010) or even loss of data (Khan, Ahmad, & Gu, 2010). This
is because there are frequently encountered scenarios where data
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packets may be lost due to various reasons including physical
damage, limited bandwidth of communication channels, confined
memory space of buffer register and congestion of network
channels. Such shortcomings may pose a considerable impact on
stability and performance of the spacecraft control system. To
tackle this, the previous hardware redundancy is applied in order
to increase system reliability. Hardware redundancy approaches
(e.g. based on duplicate, triplicate or voting schemes) (Patton &
Chen, 1997) and Fault Tree Analysis (FTA) (Kladis, Economou,
Tsourdos, White, & Knowles, 2009) have been consistently
implemented to handle the Fault Detection and Isolation (FDI)
problem in the past. However, practical limitations such as
complexity, cost, weight and unreliability of added components
by the hardware along with other tradeoff concepts have turned
the engineering community’s attention towards Model-based FDI
(MBFDI) approaches, e.g. Simani, Fantuzzi, and Patton (2003)
and references therein. MBFDI approaches can circumvent the
limitations of the hardware redundancy methods by using
mathematical models of the plant to make appropriate decisions.

In the event of loss of observation (LOOB), a robust state
estimation algorithm is required which could provide improved
and optimal attitude estimation with bounded errors. In this
study, the theoretical implementation of a robust estimation
technique, proposed in Khan et al. (2010a,b) is discussed for the
attitude estimation of a rigid body spacecraft model subject to
intermittent observation losses where a Kalman filter ensures real-
time estimation of the roll, pitch and yaw attitudes. The majority
of the previous studies have considered obtaining the spacecraft
attitude state vector by merely employing its kinematic equations
- see e.g. Crassidis and Landis Markley (1996); Tongyue, Zhenbang,
Jun, Wei, and Wei (2006); Heredia and Ollero (2009); Lefferts,
Markley, and Shuster (1982); Pirmoradi, Sassani, and de Silva
(2009) and the references therein. In this paper, both kinematic
and dynamics models are considered to compute the state vector
of the spacecraft model. For simplicity, model uncertainties such as
distribution of momentum due to the use of rotating instruments
are neglected in this analysis. This is due to the fact that this paper
is mainly focused on estimation, rather than control. However, in
order to illustrate some of the results, it is required to build a stable
closed-loop system. To this end, an output feedback controller
is designed through Lyapunov theory for the stabilisation of
the spacecraft dynamics. The effectiveness of the compensated
closed loop algorithm for a nonlinear rigid body spacecraft model
subjected to output data loss is demonstrated through simulating
a numerical example.

The remainder of the paper is organised as follows. In Section 2,
the nonlinear attitude model of a rigid body spacecraft system
is formulated by employing Euler equations of rotational dynam-
ics and kinematic equations in the Modified Rodrigues parametri-
sations. Section 3 outlines the output feedback controller design
which is aimed at stabilising the nonlinear spacecraft model. An
overview of the extended version of the compensated closed-
loop estimation scheme with loss of observations is discussed in
Section 4. Simulation results showing the performance of the ro-
bust Extended Kalman filter (EKF) for the attitude estimation under
intermittent observations are presented in Section 5. Conclusions
and future work are highlighted in Section 6.

2. Rigid body spacecraft dynamics

In this section, the nonlinear plant and output dynamics of a
rigid body spacecraft system are presented. Due to a number of in-
herent limitations of the Euler angles (which includes involvement
of trigonometric functions and singularity problems) and of the
quaternion parametrisations (such as extra redundant element and
unit norm constraint of the four quaternion elements) discussed

in Lefferts et al. (1982), the Modified Rodrigues Parameters (MRPs)
have recently found an elegant enhancement compared to the fam-
ily of attitude parameters (Schaub & Junkins, 2003). For this reason,
MRP representations are employed for the spacecraft analysis in
this paper.

2.1. Spacecraft plant dynamics

The spacecraft plant dynamics of a rigid body model are usually
described by its kinematic equations only. However, in this work
the spacecraft system is modelled as a rigid body and its state
vector is described by two sets of equations namely Euler equations
of rotational dynamics and the kinematic equations using MRP,
to explore the complete insight of the spacecraft systems as
follows:

2.1.1. Kinematic equations
According to Schaub and Junkins (2003), the kinematic
equations of the rigid body spacecraft in terms of MRP are given as

6 =T(o)o (1)

where o is the MRP attitude vector and T(o') is the Jacobian matrix
defined as

1[/1-0To .
T(U)=2|:(2>I3X3+S(U)+UG ] (2)

S(o) is a skew symmetric matrix representing the cross product
operation of vector ¢, and o is the noisy angular velocity vector
where o and @ € R3. Since the gyroscope output, y;(t), is propor-
tional to the angular velocity, the following equation represents
the noisy gyroscope model (Wertz, 1990):

yi=aif(t) +ni(t) i=1,2,3 (3)

where q; is the scale coefficient, 6; is the angular position, and n;
represents gyroscope noise containing the scale factor error and
drift. To obtain the angular position, the output of the gyroscope
(angular velocity) is required to be integrated. Such integration
could potentially end up with signal divergence in time due to
unmeasured noise and/or numerical integration errors. Thus it is
common practice that a reference sensor is usually required to re-
set the gyroscope from time to time. The gyroscope noise is as-
sumed to be Gaussian zero-mean white noise, i.e.

n; ~ N(0, A) (4)

where the intensity A is the variance of the noise.

2.1.2. Dynamical equations
Euler’s equations of a rotational dynamics are represented by
Jo = —S@)Jw + (5)

where t € R3 is the control input torque, ] € R3*3 is the inertia
matrix and S(@w) = @ x @' is the skew symmetric matrix repre-
senting the cross product operation as

0 —ws3 w7
S(w) =| w3 0 —w1 |. (6)
—wy W 0

The kinematic and dynamic equations (1) and (5) produce the aug-
mented state vector associated with the plant model

x(t) = f(x(t), (1), §(0)) (7)

where x = [0, »]” and £ are the states and process noise vector.
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