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a b s t r a c t

We consider inherent robustness properties of model predictive control (MPC) for continuous-time non-
linear systems with input constraints and terminal constraints. We show that MPC with a nominal pre-
diction model and persistent but bounded disturbances has some degree of inherent robustness when
the terminal control law and the terminal penalty matrix are chosen as the linear quadratic control law
and the related Lyapunov matrix, respectively. We emphasize that the input constraint sets can be any
compact set rather than convex sets, and our results do not depend on the continuity of the optimal cost
function or of the control law in the interior of the feasible region.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Model predictive control (MPC) has received remarkable atten-
tion in both practical applications and theoretical research over
the last 30 years since it is capable of explicitly dealing with state
and input constraints (Mayne, Rawlings, Rao, & Scokaert, 2000;
Qin & Badgwell, 2003). The basic idea of standard MPC (Chen
& Allgöwer, 1998; Fontes, 2001; Magni, De Nicolao, & Scattolini,
2001; Mayne et al., 2000) is as follows: Online, a finite horizon
open-loop optimal control problem based on the currentmeasure-
ment of the system states is solved. Then, the first part of the
obtained open-loop optimal input trajectory is applied to the sys-
tem. At the succeeding time instant, the optimal control problem
is solved again using new state measurements and with a shifted
horizon, and the actual control input is updated.
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For a nominally stabilizing model predictive control (MPC)
scheme the presence of disturbances and/or model uncertainties
may lead to performance deterioration or even loss of stability.
An intuitive approach to guarantee robust stability and recursive
feasibility is to use a min–max MPC formulation, where the op-
timal input is determined such that the performance criteria is
minimized for the worst-case uncertainty (Bemporad, Borrelli, &
Morari, 2003; Chen, Scherer, & Allgöwer, 1997; Fontes & Magni,
2003; Limon, Alamo, Salas, & Camacho, 2006; Magni, De Nico-
lao, Scattolini, & Allgöwer, 2003; Raimondo, Limon, Lazar, Magni,
& Camacho, 2009; Scokaert & Mayne, 1998). However, such ap-
proaches are usually computationally expensive. Furthermore, the
optimal input is obtained for a possibly unrealistic worst-case
scenario, which often results in poor performance in the case of
small actual uncertainties. Constraint tightening approaches, as
introduced by Chisci, Rossiter, and Zappa (2001), Limon, Alamo,
and Camacho (2002) and Richards andHow (2006), can avoid com-
putational complexity by using a nominal prediction model and
tightened constraint sets. However, the constraint sets shrink dras-
tically because the ‘‘margin’’, which reflects the effect of uncertain-
ties, increases exponentially with the increase of the prediction
horizon. For linear discrete-time systems with persistent distur-
bances,Mayne, Seron, andRakovic (2005) andRawlings andMayne
(2009) provide a new constraint tightening, tube based robustMPC
scheme, which has fixed tightened sets. The results utilize both
state feedback control and feedforward control action, and have
been extended by Rakovic, Teel, Mayne, and Astolfi (2006); Yu,
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Böhm, Chen, and Allgöwer (2010) to systems with matched non-
linearity and piecewise affine systems. The tube based robust MPC
scheme has also been extended to general discrete-time nonlinear
systems (Mayne, Kerrigan, van Wyk, & Falugi, 2011). It possesses
two loops, where a nominal MPC scheme in the inner loop gener-
ates a reference trajectory and the MPC control in the outer loop
steers trajectories of the uncertain systems towards the reference
trajectory. The schemes are based on the a priori estimation of the
effect of disturbances over the prediction horizon.

Since robust MPC methods are much more complex than those
developed for the nominal case, it is of interest to analyze un-
der which conditions nominal MPC can guarantee robustness with
respect to specific classes of disturbances. The paper (Grimm,
Messina, Tuna, & Teel, 2004) used examples to illustrate that MPC
applied to nonlinear systems can produce nominal asymptotic sta-
bility without any robustness, when the optimization problem
contains state constraints or equality terminal constraints. In the
examples, either the considered nonlinear system is discontinuous
at its equilibrium or the Jacobian linearization of the considered
nonlinear systems is not stabilizable. Under the fundamental as-
sumption that the presence of uncertainties or disturbances do not
cause any loss of feasibility, robustness properties of nominal MPC
algorithms are proved in Magni and Sepulchre (1997), Nicolao,
Magni, and Scattolini (1996) and Scokaert, Rawlings, andMeadows
(1997). The recursive feasibility assumption holds true when the
problem formulation does not include state and input constraints
and when the terminal constraint used to guarantee nominal sta-
bility is also satisfied under perturbed conditions (Magni & Scat-
tolini, 2007). For unconstrained input-affine nonlinear systems, it
is shown in Magni and Sepulchre (1997) that the nominal MPC
control law is inverse optimal. Thus, it is also optimal for a mod-
ified optimal control problem spanning over an infinite horizon.
Due to this inverse optimality property, theMPC control law inher-
its the same robustness properties as the infinite horizon optimal
control assuming that the sampling time goes to zero. Under the
assumption that the optimal cost function is twice continuously
differentiable, it has been shown in Nicolao et al. (1996) that MPC
control law provides robustness with respect to gain perturbations
due to actuator and additive perturbations describing unmodeled
dynamics. Results on inherent robustness with exponentially de-
caying disturbances are reported in Scokaert et al. (1997) with
the assumption that the MPC control law is Lipschitz continuous.
The papers (Findeisen & Allgöwer, 2005; Limon et al., 2009; Pan-
nocchia, Rawlings, & Wright, 2011) show that nominal MPC pos-
sesses inherent robustness properties if the optimal cost function is
locally Lipschitz continuous or the MPC control law is regionally
continuous. However, both the resulting MPC control law and the
optimal value function associated to the optimization problem
defining nominal MPC can be discontinuous (Fontes, 2000; Mead-
ows, Henson, Eaton, & Rawlings, 1995; Rawlings & Mayne, 2009).
While MPC is applied to linear systems with convex constraints,
some robustness exists (Grimm et al., 2004). The result depends on
the fact that continuity of the optimal value function on the interior
of the feasible region is a sufficient condition for robustness, as is
continuity of the feedback law on the interior of the feasible region
(Jiang & Wang, 2001). The paper (Grimm, Messina, Tuna, & Teel,
2007) shows that the system under control is robust to sufficient
small disturbances, if (a) the value function is bounded by a K∞

function of a state measure (related to the distance from the state
to some target set) and this measure is detectable from the stage
cost used in the MPC algorithm; (b) the systems satisfy a defini-
tion that attempts to characterize the robustness properties of the
MPC optimization problem. Instead of the analysis of the inherent
robustness properties of existing nominal MPC schemes, Lazar and
Heemels (2009) and Picasso, Desiderio, and Scattolini (2010, 2011,
2012) propose novel nominal MPC schemes which have some in-
herent robustness properties.

Quasi-infinite horizon MPC (Chen & Allgöwer, 1998; Mayne
et al., 2000) is one of the main results of nonlinear MPC with
guaranteed nominal stability. Our previous conference paper (Yu,
Reble, Chen, & Allgöwer, 2011) considers the inherent robustness
properties of quasi-infinite horizon MPC with input constraints
and a terminal constraint. Although the recursive feasibility is
proved directly, the proof of robust stability is not complete. In
this paper, we rigorously show inherent robustness properties
of quasi-infinite horizon MPC of nonlinear systems with input
constraints, where the disturbances are persistent but bounded
and the optimization problem has a terminal constraint. It is
worth noting that the following analysis does neither assume the
continuity of the optimal cost function nor of the control law, and
hence the results are more general than previous results available
in the literature. It is shown that the degree of robustness depends
on the terminal set and on the terminal penalty function, the
prediction horizon, the upper bound on the disturbances, and the
Lipschitz constant of the system.

The remainder of the paper is organized as follows. The problem
is set up in Section 2. Terminal conditions for nominal stability,
recursive feasibility of the online optimization problem, and robust
stability are proposed in Section 3. Further results on inherent
robustness properties of linear MPC is discussed in 4. Section 5
provides two examples to demonstrate the effectiveness of the
derived results.

1.1. Notations and basic definitions

LetR denote the field of real numbers andRn the n-dimensional
Euclidean space, Z[0,∞) the field of non-negative integers. For a
vector v ∈ Rn, ∥v∥ denotes the 2-norm and ∥v∥Q =


vTQv with

Q ∈ Rn×n and Q > 0. Let M ∈ Rn×n, λmin(M) (λmax(M)) is the
smallest (largest) real part of the eigenvalues ofmatrixM andσ(M)
the largest singular value of M . The operation ⊕ is the addition of
sets A ⊂ Rn and B ⊂ Rn, A ⊕ B :=


a + b ∈ Rn

|a ∈ A, b ∈ B

.

The operation ⊖ is the subtraction of sets A ⊂ Rn and B ⊂ Rn,
where A ⊖ B := {x ∈ Rnx |{x} ⊕ B ⊆ A}. Denote the set
B(x0, δ) := {x ∈ Rn

| ∥x− x0∥ ≤ δ}, B(δ) := {x ∈ Rn
| ∥x∥ ≤ δ},

and ∅ as the empty set. Denote Ln
[a,b] as the space of all Lebesgue

functions mapping from [a, b] to Rn.
We introduce the following definitions which will be used in

the paper:

Definition 1. A system is ultimately bounded if the system con-
verges asymptotically to a bounded set.

Definition 2 (Hausdorff Distance Rawlings & Mayne, 2009). The
Hausdorff distance d(·, ·) between two sets X ⊂ Rn and Y ⊂ Rn

is defined by

d(X, Y) := max

sup
x∈X

d(x, Y), sup
y∈Y

d(y, X)


,

in which d(a, M) denotes the distance of a point a ∈ Rn from a set
M ⊂ Rn, which is defined by

d(a, M) := inf
b∈M

d(a, b),

where d(a, b) = ∥a − b∥.

Definition 3 (Relation). Suppose that both X and Y are compact
sets with X ⊆ Y ⊂ Rn, and X̄ and Ȳ are the boundaries of sets X
and Y, respectively. The relation dr(·, ·) between sets X and Y is
defined by

dr(X, Y) := min
x∈X̄, y∈Ȳ

∥x − y∥.
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