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a b s t r a c t

Accurate frequency-domain system identification demands for reliable computational algorithms. The
aimof this paper is to develop anewalgorithm for parametric system identificationwith favorable conver-
gence properties and optimal numerical conditioning. Recent results in frequency-domain instrumental
variable identification are exploited, which lead to enhanced convergence properties compared to classi-
cal identification algorithms. In addition, bi-orthonormal polynomials with respect to a data-dependent
bi-linear form are introduced for system identification. Hereby, optimal numerical conditioning of the
relevant system of equations is achieved. This is shown to be particularly important for the class of instru-
mental variable algorithms, for which numerical conditioning is typically quadratic compared to alterna-
tive frequency-domain identification algorithms. Superiority of the proposed algorithm is demonstrated
by means of both simulation and experimental results.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Frequency-domain system identification (McKelvey, 2002; Pin-
telon & Schoukens, 2001) is of significant importance for a broad
class of applications, since it enables (i) straightforward data re-
duction, (ii) straightforward combination of multiple data sets,
(iii) direct estimation and use of nonparametric noise models, and
(iv) a direct connection to control-relevant identification criteria.

Many parametric identification techniques based on frequency-
domain data involve a nonlinear least-squares problem. Here, the
nonlinearity arises from the parametrization of the poles in the de-
nominator polynomial. In Levy (1959), the nonlinear problem is
approximated using a single linear least-squares problem. How-
ever, this introduces an a priori unknown weighting function. The
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SK-algorithm (Sanathanan & Koerner, 1963) mitigates the effect of
such weighting through iterations. In Bayard (1994) and de Calla-
fon, de Roover, and Van den Hof (1996), the SK-algorithm is gener-
alized to multivariable systems. Nevertheless, two aspects require
further attention.

On one hand, frequency-domain identification problems are
typically numerically ill-conditioned. Several partial solutions ex-
ist, including (i) frequency scaling (Pintelon & Kollár, 2005),
(ii) amplitude scaling (Hakvoort & Van den Hof, 1994), and
(iii) the use of orthonormal polynomials and orthonormal ratio-
nal functions with respect to a continuous inner product, see,
e.g., Heuberger, Van den Hof, and Wahlberg (2005) and Nin-
ness and Hjalmarsson (2001) for a connection with numerical
properties. These approaches confirm that ill-conditioning is an
important aspect in system identification applications and they
typically improve numerical conditioning. However, these partial
solutions may be insufficient to reliably solve complex frequency-
domain identification problems. Therefore, in Oomen and Stein-
buch (to appear) and van Herpen, Oomen, and Bosgra (2012b), an
approach is presented that leads to optimal numerical condition-
ing of the SK-algorithm by using polynomials that are orthonormal
with respect to a data-based discrete inner product, see Reichel,
Ammar, and Gragg (1991) and Van Barel and Bultheel (1995) for a
definition and earlier results.

On the other hand, the fixed point of the SK-algorithm generally
does not correspond to a (local) minimum of the nonlinear least-
squares criterion, as shown in Whitfield (1987). Consequently, the
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SK-algorithm is typically used as an initialization for subsequent
Gauss–Newton iterations, see, e.g., Bayard (1994) and Pintelon and
Schoukens (2001, Section 7.9.1), which guarantees convergence to
a (local) minimum.

Recently, in Douma (2006, Sections 3.5.3 and 3.5.8), an alterna-
tive frequency-domain identification algorithm has been formu-
lated, in which a fixed point of the iterations corresponds to an
optimum of the objective function. This renders a Gauss–Newton
iteration superfluous, potentially enabling an increase of algorithm
efficiency. The new algorithm, which has been extended towards
multivariable systems in Blom and Van den Hof (2010), takes the
form of an iterative instrumental variable method, see also Stoica
and Söderström (1981) and Young (1976) for earlier results in this
direction.

Although the result in Blom and Van denHof (2010) and Douma
(2006) potentially reduces the number of iterations in frequency-
domain identification, a direct implementation of the algorithm
exhibits poor numerical properties. This is further supported in
this paper, both bymeans of a theoretical analysis and a numerical
example. In fact, the condition numbers associated with the algo-
rithm are quadratically larger than for the standard SK-iterations.
This obstructs a reliable and accurate computation of the optimal
model. In addition, the approach in Reichel et al. (1991), Van Barel
and Bultheel (1995) and van Herpen et al. (2012b) for optimal con-
ditioning of the SK-iterations does not apply to the algorithm in
Blom and Van den Hof (2010) due to the lack of an appropriate in-
ner product.

The main contribution of this paper is a new framework for
frequency-domain system identification based on a nonlinear
least-squares criterion, which (i) provides advantageous conver-
gence properties, and (ii) ensures optimal numerical conditioning
(κ = 1). Essentially, the proposed solution exploits the results in
Blom and Van den Hof (2010), while providing optimal numeri-
cal conditioning in the spirit of Reichel et al. (1991), Van Barel and
Bultheel (1995) and van Herpen et al. (2012b), albeit through a
fundamentally different mechanism. In particular, the new algo-
rithm relies on the introduction of bi-orthonormal polynomial bases
in system identification. Recently, in Gilson, Welsh, and Garnier
(2013) andWelsh and Goodwin (2003), the need for enhancement
of numerical conditioning in frequency-domain instrumental vari-
able identification has been confirmed and some enhancements
have been obtained by using an alternative polynomial basis. The
approach in this paper reformulates the instrumental-variable
algorithm using bi-orthonormal polynomials with respect to a
data-dependent bi-linear form, which leads to optimal numerical
conditioning, i.e., κ = 1. The following specific contributions are
presented in this paper.

(C1) The numerical conditioning that is associated with the linear
system of equations of the algorithm in Blom and Van den
Hof (2010) is quadratically larger than the condition numbers
encountered in the standard SK-iterations (Bayard, 1994;
de Callafon et al., 1996; Sanathanan & Koerner, 1963), as
is shown both theoretically and by means of a numerical
example.

(C2) The algorithm in Blom and Van den Hof (2010) has the inter-
pretation of an instrumental variable method. Such type of
method admits a transformation of instruments (Söderström
& Stoica, 1983). This freedom is exploited to formulate the al-
gorithm in two distinct polynomial bases: one for the model
(at the present iteration) and one for the instrument.

(C3) Optimal numerical conditioning is achieved by selecting
polynomial bases that are bi-orthonormal with respect to a
data-dependent bi-linear form. This bi-linear form accounts
for the asymmetric and indefinite character of instrumen-
tal variable problems. As a special case, the bi-orthonormal

polynomial bases include the orthonormal polynomials with
respect to a data-based discrete inner product in Reichel et al.
(1991), Van Barel and Bultheel (1995) and van Herpen et al.
(2012b).

(C4) Identification of a SISO rational transfer function requires
modeling of a numerator and denominator polynomial. Thus,
this paper considers a 2 × 1 vector-polynomial, which is de-
veloped in terms of a 2 × 2 block-polynomial basis. The con-
struction of bi-orthonormal block-polynomials from given
frequency response data is presented for continuous-time
systems. It is shown that an efficient construction using
three-term-recurrence relations is possible, where the recur-
sion coefficients are obtained from a matrix 2 × 2 block-
tridiagonalization problem.

(C5) Superiority of the proposed algorithm is shown by means of
a simulation example and is experimentally validated on an
industrial motion system.

This paper extends the results in van Herpen, Oomen, and
Bosgra (2012a), inwhich optimal conditioning of asymmetric poly-
nomial equalities using bi-orthonormal polynomials is introduced,
by (i) explicitly connecting bi-orthonormal polynomials with in-
strumental variable identification (C2)–(C3), and (ii) extending the
construction of scalar bi-orthonormal polynomials towards 2 × 2
block-polynomials (C4). The latter result facilitates the estimation
of a numerator–denominator vector-polynomial, which enables a
confrontation of the proposed method with frequency-domain
identification problems (C5). In van Herpen (2014, Chap. 2), a
complementary study of relevant aspects in the theory of bi-
orthonormal polynomials is provided.

This paper is organized as follows. In Section 2, the frequency-
domain identification problem is posed and two iterative algo-
rithms are compared with respect to their convergence properties.
In Section 3, the numerical properties of both algorithms are eval-
uated, motivating the need for enhancement of numerical condi-
tioning (C1). Then, in Section 4, bi-orthonormal polynomials are
introduced in frequency-domain system identification, which pro-
vides optimal numerical conditioning (C2)–(C3). Subsequently, in
Section 5, the construction of bi-orthonormal polynomials using
three-term-recurrence relations is presented (C4). In Section 6, an
experimental validation of the benefits of the new algorithm for
frequency-domain system identification is provided (C5). Conclu-
sions are drawn in Section 7.

Notation: throughout this paper, ξ represents either s = ȷω or
z = eȷω , ȷ =

√
−1, where ω ∈ R denotes a frequency. Moreover,

Rp×q
[ξ ] denotes a p × q matrix of real polynomials in ξ . Finally,

A∗ denotes the conjugate of A, whereas AH denotes the conjugate
transpose of A.

Scope: for clarity of the exposition, attention is restricted to iden-
tification of SISO systems. The results in this paper can be general-
ized to themultivariable situation along conceptually similar lines.
In this case, matrix fraction descriptions (MFDs), see, e.g., Kailath
(1980, Chap. 6), provide a suitable framework as they directly con-
nect to state-space models. Note that besides model order selec-
tion, i.e., the McMillan degree of the model, such multivariable
models also require the selection of Kronecker indices. The reader
is referred to Gevers (1986) andMoore (1981) for further informa-
tion.

In the second part of the paper, the construction of bi-
orthonormal block-polynomial bases is presented. Here, attention
is restricted to polynomials in the s-domain. The construction of bi-
orthonormal block-polynomial bases in the z-domain is conceptu-
ally similar.
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