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Abstract

Phone recognizers followed by vector space models (PR-VSM) is a state-of-the-art phonotactic method for spoken language recognition.
This method resorts to a bag-of-n-grams, with each dimension of the super vector based on the counts of n-gram tokens. The n-gram
cannot capture the long-context co-occurrence relations due to the restriction of gram order. Moreover, it is vulnerable to the errors
induced by the frontend phone recognizer. In this paper, we introduce a gap-weighted subsequence kernel (GWSK) method to overcome
the drawbacks of n-gram. GWSK counts the co-occurrence of the tokens in a non-contiguous way and thus is not only error-tolerant but
also capable of revealing the long-context relations. Beyond this, we further propose a truncated GWSK with constraints on context
length in order to remove the interference from remote tokens and lower the computational cost, and extend the idea to lattices to take
the advantage of multiple hypotheses from the phone recognizer. In addition, we investigate the optimal parameter setting and compu-
tational complexity of the proposed methods. Experiments on NIST 2009 LRE evaluation corpus with several configurations show that
the proposed GWSK is consistently more effective than the PR-VSM approach.
� 2014 Elsevier B.V. All rights reserved.
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1. Introduction

Spoken language recognition (SLR, usually shortened
to language recognition) is a developing branch of speech
signal processing. The goal is to recognize the language
of a spoken utterance, with applications in multilingual
speech recognition, speech translation, information secu-
rity and forensics (Muthusamy et al., 1994; Zissman and
Berkling, 2001).

Language recognition can be classified into two broad
categories: acoustic model methods and phonotactic meth-
ods. Acoustic model methods directly model the acoustic
spectral (or cepstral) feature vectors, and are also referred

to as spectrum methods. The classic acoustic model
methods include Gaussian mixture models (GMM)
( Torres-Carrasquillo, 2002), support vector machines
(SVM) (Zhang et al., 2006), SVM with GMM super vector
(GSV) (Torres-Carrasquillo et al., 2008) and most recently
the i-vector method (Dehak et al., 2011).

Phonotactic methods first decode the utterance into a
token string or lattice, and then model the token string
or lattice using n-gram lexicon model (Hazen and Zue,
1993; Zissman and Singer, 1994), binary-decision tree
(BT) (Navratil, 2001) or vector space model (VSM) (Li et
al., 2007; Campbell et al., 2007). These methods utilize

the internal results of phone recognizers (or tokenizers),
so are also referred to as token methods.

Of phonotactic methods, the most classic approach may
be the phone recognizer followed by language models
(PRLM) (Zissman and Singer, 1994), which uses a phone
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recognizer as the frontend to obtain the token string and
employs n-gram language model as the backend to model
the co-occurrence of the tokens. There are also several sig-
nificant improvements on PRLM focusing on different
aspects of the algorithm. The first aspect is the architecture
of the frontend. The single phone recognizer is enhanced to
parallel phone recognizers (PPR) (Zissman and Singer,
1994) or universal phone recognizer (UPR) (Li et al.,
2007), which makes the frontend capable of covering more
phones or acoustic units. The second aspect involves the
representation of phone recognizer results. The one-best
token string is extended to multi-candidate lattice
(Gauvain et al., 2004; Campbell et al., 2006a), which leads
to more accurate estimation of n-gram frequencies. The
third aspect is related to the phone recognizer itself. The
hidden Markov model (HMM) based phone recognizer is
replaced with neural networks (NN) based decoder
(Matejka et al., 2005), which makes use of long temporal
context information and gives robust token results. The
fourth aspect concerns language modeling. The n-gram
models are changed to binary-decision trees ( Navratil,
2001) which take advantage of binary-decision tree
structures, or vector space models (Li et al., 2007) which
make use of the powerful SVM classifier.

All these methods (except BT), however, explicitly or
implicitly model the co-occurrence of the tokens as contig-

uous n-grams. This suffers from two main problems. One is
order restriction. The model size is exponentially related to
the model order n, causing severe data sparsity for large n.
For this reason, it is not easy to capture long-context rela-
tions between tokens. The other problem is error sensitiv-
ity.1 It is known that the phoneme error rate of widely
used phone recognizer for language recognition is about
40–60% (Matejka et al., 2005), so utterances with the same
content may be decoded as different token strings. For
example, if an utterance is “cat” and its decoding result is
“cant”, the trigram (n ¼ 3) probabilities are totally differ-
ent. Changing the decoding result from string to lattice
can make up for this shortcoming in some extent in the
frontend, but if there are still some errors, maybe we can
do something in the backend. So our motivation is twofold:
modeling the long-context dependence beyond short
n-gram and providing an error-tolerant method through
rough matching of token strings.

In the text processing and bioinformation field, string
kernels have been successfully used for text classification
(Lodhi etal., 2002), text language identification (Kruengkrai
et al., 2005), and DNA sequence analysis (Kim et al., 2010).
The string kernel has many variants (Shawe-Taylor and
Cristianini, 2004) depending on how the subsequences are
defined, e.g. contiguous versus non-contiguous,
mismatches penalized versus non-penalized. One example
is the gap-weighted subsequence kernel (GWSK). The

GWSK counts the presence of a subsequence with a penalty
related to the number of gaps interspersed within it. In this
way, it has the merits of not only being capable of revealing
the long-context co-occurrence but also being robust to
deletion and insertion errors. In fact, in text classification,
there is no decoding error for the text string, so the GWSK
has no significant advantage over the traditional n-gram
model (Lodhi etal., 2002). For spoken language recognition,
however, the token string is generated by a phone recog-
nizer, which causes some errors, so using GWSK will have
benefit. It is worth mentioning that as early as in 1997, Navr-
atil et al. have proposed the use of skip-gram in language
identification (Navratil and Zuhlke, 1997). This method
models a pair of phones with one phone skipped. The under-
lying idea of a skip-gram is similar to that of GWSK; how-
ever, the GWSK is theoretically better formulated. The
skip-gram and GWSK both try to capture the long-context
co-occurrence with lower order n-gram. Besides that,
GWSK also has the error-tolerant ability. In this paper,
we will fully investigate the application of GWSK to lan-
guage recognition.

The rest of the paper is organized as follows. Section 2
summarize the relevant existing n-gram based approaches
and Section 3 introduces the GWSK. In Section 4, we
develop GWSK for language recognition, including trun-
cated version and lattice-based version, the detailed imple-
mentation method and some theoretical analysis on the
optimal parameter and computational complexity. Section
5 demonstrates the effectiveness of the proposed methods
through detailed experiments. Finally, conclusions are
given in Section 6.

2. Review of n-gram modeling

2.1. N-Gram model

An n-gram is a contiguous substring of n tokens from a
given token sequence (string).2 The n-gram model assumes
that the current token xi depends only on its last n� 1
tokens xi�ðn�1Þ; . . . ; xi�1 and models this dependance by con-
ditional probability:

Pðxijxi�ðn�1Þ; . . . ; xi�1Þ: ð1Þ

This Markov assumption simplifies the learning of language
model. For coping with the sparseness problem, back off
strategies (Zissman and Singer, 1994) are usually applied.

2.2. Vector space model (VSM)

A vector space model or term vector model is an alge-
braic model for representing text documents as vectors of
identifiers. The vector space model for spoken language
recognition was proposed by Li et al. (2007) and Campbell

1 The errors mentioned in this paper are random errors instead of
systematic errors.

2 According to Lerma (2008), sequence and string are both ordered lists
of elements, but string is finite and sequence is usually infinite. We do not
strictly distinguish them in this paper.
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