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A B S T R A C T

In this work, an enhanced explicit technique is proposed to analyze hyperbolic heat conduction models. As usual,
the explicit approach allows the solution of the problem to be carried out without dealing with any system of
equations, featuring a very efficient methodology. In addition, the proposed technique enables algorithmic
dissipation, allowing the influence of spurious high modes to be properly eliminated, without introducing sig-
nificant period elongation and amplitude decay errors into the analysis. As an explicit approach, the technique is
conditionally stable; however, it exhibits high stability limits (its critical time-step is around 1.8 times that of the
Central Difference Method), emphasizing its effectiveness. The technique is very accurate, truly self-starting and
extremely direct to implement. At the end of the manuscript, numerical results are presented, illustrating the
good performance of the discussed technique.

1. Introduction

Non-Fourier models have been widely explored in the last years,
since they provide a plausible physical explanation for the behavior of
heat transfer in models where the standard Fourier conduction law does
not properly apply. This has been the case, for instance, considering
heat transfer in cryogenic fluid and biomaterials, as well as considering
the micro- and nano-scales ultrafast transient heating of metals.

The main difference between the traditional Fourier heat conduc-
tion model and the non-Fourier hyperbolic formulation is that the later
takes into account the wave nature of thermal transfer. As described by
Wu et al. [1], many works have been published in the solution and
analysis of non-Fourier models, in the last decades: Carey and Tsai [2],
for instance, presented some numerical methods for 1D cases, com-
bining the Finite Element Method for the spatial domain and two dif-
ference schemes for the time domain; Manzari et al. [3,4] presented a
numerical approach, combining the Galerkin method and the Crank-
Nicolson method; Zhang et al. [5,6] suggested a approach for 1D heat
equations, employing a fourth-order boundary value method for dis-
cretizing the temporal variable and a fourth-order compact difference
scheme for discretizing the spatial variable; Monteiro et al. [7] devel-
oped a method for the hyperbolic heat transfer in a finite slab, using a
generalized integral transform and the Gear method; Saleh and Al-Nimr
[8] developed a variational formulation applying the Laplace transform
technique to overcome the oscillations of the numerical results; Chen
et al. [9–12] and Loureiro et al. [13] developed methods based on
Green functions for the hyperbolic heat equation, and discussed 1D and

2D cases; Hsu [14] employed the differential quadrature method; Roy
et al. [15] suggested a new difference scheme based on the multiple
scale technique; Miller and Haber [16] presented a new space-time
discontinuous Galerkin FEM for the hyperbolic heat conduction pro-
blem; Movahedian and Boroomand [17] proposed a solution method
using exponential basis functions; and Han [18,19] discussed the finite
volume solution of 1D and 2D problems, considering homogeneous and
heterogeneous media.

In the present work, a new explicit formulation is proposed to
analyze non-Fourier hyperbolic heat conduction models. Explicit pro-
cedures are usually preferable because of their lower computational
effort, allowing responses to be obtained without the necessity to deal
with the solution of any system of equations; however, there are re-
strictions in their use due to stability conditions. The procedure that is
discussed here is an extension of the previous works of Soares [20,21],
which were mainly concerned with dynamic analyzes. In the present
methodology, algorithmic dissipation is enabled, allowing overcoming
spurious numerical oscillations. The technique is very simple and direct
to implement, and it is only based on single-step relations of the tem-
perature and its first time derivative, characterizing a truly self-starting
procedure. In addition, the formulation exhibits enhanced accuracy and
it has extended stability limits, with its critical time-step being around
1.8 times that of the classical Central Difference Method (CDM). Thus, it
minimizes the main drawback of explicit procedures, allowing time-
steps that are usually adopted in implicit analyzes to be considered,
enabling good results to be calculated at much reduced computational
costs.
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The manuscript is organized as follows: first, the governing equa-
tions are briefly presented, describing the problem to be analyzed once
a spatial discretization technique is applied to the hyperbolic heat
conduction model; in the sequence, the proposed explicit time
marching technique is described, and some of its properties are dis-
cussed; finally, numerical examples are presented, illustrating the good
performance of the proposed methodology.

2. Governing equations

The classical Fourier conduction law yields temperature solutions
which imply in an infinite speed of heat propagation. In order to
eliminate this anomaly, Cattaneo[22] and Vernotte [23] formulated a
time-dependent relaxation model for the heat flux in solids, introducing
a relaxation time τ into the analysis. Thus, the heat flux vector q be-
came related to the temperature gradient ∇T as:

+ = − ∇t τ t k T tq x q x x( , ) ˙ ( , ) ( , ) (1)

where over dots indicate time derivatives and k stands for the thermal
conductivity. If τ=0 is considered, Eq. (1), which describes the non-
Fourier model in focus, reduces to the classical Fourier conduction law.

By associating Eq. (1) to the energy conservation law, the governing
equation of the hyperbolic heat conduction can be deduced, and it may
be expressed as:

+ − ∇ ∇ =τρcT t ρcT t k T t Q tx x x x¨ ( , ) ˙ ( , ) · ( , ) ( , ) (2)

where ρ and c stand for the mass density and specific heat capacity,
respectively, and Q stands for source terms.

Once a spatial discretization technique is employed (as for instance,
the Finite Element Method [24,25]) taking into account the governing
Eq. (2), Eq. (3) may be obtained:

+ + =τ t t t tCT CT KT F¨ ( ) ˙ ( ) ( ) ( ) (3)

where K stands for the thermal conductance matrix, C represents the
heat capacity matrix, F is the heat load vector and T is the temperature
vector.

In the next section, the time domain solution of Eq. (3) is discussed,
taking into account an enhanced explicit procedure. As one will ob-
serve, once lumped heat capacity matrices are considered, the proposed
algorithm becomes very efficient, generating no system of equations to
be dealt with at each time step of the analysis. In addition, as described
by previous authors [1], lumped heat capacity matrices may also ex-
hibit further advantages, such as better resistance to numerical oscil-
lations. Thus, lumped C is considered here.

3. Time-domain solution

Considering a regular time discretization, which is defined by a
time-step Δt (i.e., tn+1= tn+ Δt), the following algorithm enables the
explicit solution of Eq. (3):
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where the integration constants a are defined as: a0= Δt/(2τ+ Δt);
a1= (2τ− Δt)/(2τ+ Δt); a2= 2a0; a3= Δta0; a4= Δt/2; a5= a4− a3;
a6= 0.007359Δt2a2; and a7= 0.071067Δt2a2.

As one can observe, Eqs. (4a,b) stand as a very simple truly self-
starting explicit approach and their implementation is very direct. They
require no system of equations to be dealt with (as previously re-
marked, diagonal Cmatrices are considered), as well as they do not deal
with higher time derivatives of the temperature field and/or field va-
lues at multiple time steps; i.e., just the temperature field itself and its
first time derivative are considered in Eqs. (4a,b), taking into account
their values in the current and previous time steps of the time marching
process.

It is important to highlight that Eqs. (4a,b) are mathematically
constructed; i.e., the above expressions and constants were mathema-
tically established so that a group of positive features would be in-
troduced into the solution process. Thus, equations (4) are not based on
simple approximate assumptions, but on connected mathematical ef-
forts. Basically, Eqs. (4a,b) were developed so that the method would
exhibit large critical stability limits and it would provide elevated al-
gorithmic dissipation in the higher modes of the problem. The algo-
rithm described by Eqs. (4a,b) can be stated as an evolution and gen-
eralization of the method proposed by Soares [20], for dynamic
analysis. In this context, Eq. (4a) and the initial terms of Eq. (4b) were
adapted from [20], following an explicit pattern, and the term
− − ++ − +a a aT C K T T˙ ( ˙ ˙ )n n n

3
1 1

6 7
1 was added to the methodology

(Eq. (4b)), providing spectral radius curves with a single bifurcation
point that occurs at large sampling frequencies and that relates to low
spectral radius values (in fact, the methodology was formulated so that
the spectral radius of the method would become null at the bifurcation
point, for τ→∞). In addition, the algorithm was developed so that a
unique critical stability limit would occur.

As usual, in order to better analyze the properties of the proposed
technique, the following single-degree-of-freedom (SDOF) model can be
studied:

+ + =T t ς T t ω T t f t¨ ( ) ˙ ( ) ( ) ( )2 (5)

where ς = τ− 1 and ω2 relates to an eigenvalue of the model, which is
computed based on matrices K and τC.

Considering Eq. (5) and the solution algorithm (4), the following
recursive relationship may be obtained:
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where A and L stand for the amplification and the load operator ma-
trices, respectively, and the entries of A are given by (rounded values
are considered):
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The stability condition requires that matrix A does not amplify er-
rors as the time-step algorithm advances on time. The conditions re-
quired to assure stability are [24]: (i) ρ(A) ≤ 1; (ii) eigenvalues of A of
multiplicity greater than one are strictly less than one in modulus. In
item (i), ρ(A) is the spectral radius of matrix A, which represents the
maximal absolute magnitude of the eigenvalues of A.

The eigenvalues of the amplification matrix are given by:

= ± −λ A A AA( ) ( )1,2 1 1
2

2
1/2 (8)

where A1 is half the trace of matrix A and A2 is the determinant of A.
Taking into account the proposed methodology, A1 and A2 may be
expressed as:

= + − + +A ς t ω t ω t ς t(4 2 Δ 2 Δ 0.142134 Δ )/(2 Δ )1
2 2 4 4 2 (9a)

= − − +A ς t ω t ς t(4 Δ 0.029436 Δ )/(2 Δ )2
2 2 4 4 2 (9b)

which allow establishing the stability limit of the method.
In this way, the critical sampling frequency of the model Ωc, which

is the value of Ω=ωΔt under which stability is ensured, is given by
Ωc=3.570835, considering the present technique. It is important to
observe that this value does not depend on ς; in fact, Eqs. (4a,b) are
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