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A B S T R A C T

The phase-field model (PFM) represents the crack geometry in a diffusive way without introducing sharp dis-
continuities. This feature enables PFM to effectively model crack propagation compared with numerical methods
based on discrete crack model, especially for complex crack patterns. Due to the involvement of “phased field”,
phase-field method can be essentially treated a multifield problem even for pure mechanical problem. Therefore,
it is supposed that the implementation of PFM based on a software developer that especially supports the so-
lution of multifield problems should be more effective, simpler and more efficient than PFM implemented on a
general finite element software. In this work, the authors aim to devise a simple and efficient implementation of
phase-field model for the modelling of quasi-static and dynamic fracture in the general purpose commercial
software developer, COMSOL Multiphysics. Notably only the tensile stress induced crack is accounted for crack
evolution by using the decomposition of elastic strain energy. The width of the diffusive crack is controlled by a
length-scale parameter. Equations that govern body motion and phase-field evolution are written into different
modules in COMSOL, which are then coupled to a whole system to be solved. A staggered scheme is adopted to
solve the coupled system and each module is solved sequentially during one time step. A number of 2D and 3D
examples are tested to investigate the performance of the present implementation. Our simulations show good
agreement with previous works, indicating the feasibility and validity of the COMSOL implementation of PFM.

1. Introduction

Fracture induced failure has obtained extensive concern in en-
gineering designs because of the potential serious risks for structures
and machines being used [1]. The research on crack initiation and
propagation in solids has therefore become very important [2]. Parti-
cularly, when experiments are difficult, or even impossible to perform
for studying certain type of crack propagation, researchers have to
employ numerical approaches to predict complicated crack paths [3]
such as those in multiple scales [4–8]. Consequently, a great number of
numerical methods have been proposed to deal with crack problems in
recent years.

Most of these methods have to describe complex crack geometry in
the discrete setting, such as the discrete crack models [9], the extended
finite element method (XFEM) [10,11], generalized finite-elements
method (GFEM) [12], and the phantom-node method [13,14]. These
methods all enrich the displacement field with discontinuities.

Particularly, the discrete crack model [9] introduces new boundaries
for the freshly created crack surfaces by an adaptive reconstruction of
the mesh. XFEM [10] enriches the cracked elements by adding a set of
discontinuous shape functions to the standard parts of FEM. Another
common option to model cracks is the so-called cohesive elements
[15–17] that allow displacement jumps on element boundaries and
cracks are therefore restricted to penetrate along the corresponding
element edges. In addition, the element-erosion methods [18–20] also
succeeds in dealing with the fracture surfaces by setting the stresses of
the elements, which meet the fracture criterion, as zero. However, the
element-erosion methods have the disadvantage that they cannot si-
mulate crack branching correctly [21]. Therefore, the complicated and
special treatments for complex crack topologies have made these nu-
merical approaches not so easy to implement and apply in practical
engineering.

A recently emerged and developed approach, the phase-field
method (PFM) [22–26], has attracted a lot of attention because of its
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relatively easier numerical implementation for fracture. The phase-field
models utilize a scalar field (so-called phase-field) to represent the
discrete cracks. The phase-field does not describe the crack as a physical
discontinuity and just smoothly transits the intact material to the
thoroughly broken one. The shape and propagation of the crack depend
on the evolution equations of the phase-field. Thus, implementation of
the phase-field does not require additional work to track the fracture
surfaces algorithmically [24]. This results in that the phase-field
methods have a large advantage over the discrete fracture models for
modeling multiple and crack branching and merging in materials with
arbitrary 2D and 3D geometries.

The phase-field models for quasi-static brittle crack started from
[27] and improved by authors in [22,23]. All these models are regarded
as extension of the classical Griffith fracture theory and then extended
to dynamic problems by Borden et al. [24]. In addition, Land-
au–Ginzburg type evolution equations [28] instead of the Griffith type
have also been proposed and developed for the phase-field description
of dynamic fracture. The progress in the phase-field models for quasi-
static and dynamic crack problems has made PFM successfully applied
in different problems, such as cohesive fractures [29], ductile fractures
[30,31], large strain problems [25], hydraulic fracturing [32], thermo-
elastic problems [33,34], electrochemical problems [35], thin shell
[36], and stressed grain growth in polycrystalline metals [37–39].
These attempts imply that the application of the phase-field methods is
quite beyond purely mechanical problems. This naturally requires a
much easier implementation approach for the phase-field models.
Otherwise, extensive application of the phase-field models will be re-
stricted, especially in multi-physical problems.

Due to the smooth characteristics of the phase-field, the phase-field
method can be implemented in any existing standard finite element to
model complex crack patterns as shown in [22,23]. Therefore, to reduce
the efforts in implementation, it is desirable to implement phase-field
method to an extensively used FEM code or commercial software. In
fact, [40] and [2] have implemented the phase-field method for brittle
cracks in Abaqus. However, the phase-field modeling itself is essentially
a multi-field problem even in the case of pure mechanical problem
[22,23]. From the authors’ experience, it is laborious and time con-
suming to implement a multifield problem in Abaqus. Therefore, a
general purpose programme developer that especially supports the
programming of multifield problem such as COMSOL has the potential
to become a better solution than Abaqus.

In this paper, the possibility of simple and fast implementation of
phase-field method is exploited for fracture modelling in a multifield
programme developer, namely COMSOL Multiphysics. The phase-field
modeling in COMSOL can be easily extended to problems that have
more coupled fields by just adding suitable modules and coupling
terms. It will be quite easy for readers to use this first-step im-
plementation and augment it by other physical phenomena to solve
multiphysics problems involving crack propagation. For example, the
phase field implementation in COMSOL can be extended and applied to
hydraulic fracturing, or compressed air energy storage [41,42], which
involves fluid pressure field, temperature, and cyclic effects [43–46]. In

this work, one phase-field model presented by authors in [22,23] for a
quasi-static crack problem and another one presented by Borden et al.
[24] for dynamic problems are implemented in COMSOL in a staggered
scheme. The elastic strain energy density is decomposed into two in-
dividual parts resulting from compression and tension, respectively.
Thus, the fractures only due to tension can be obtained. In COMSOL, we
use an implicit time integration scheme to enable the simulation. We
also calculate some 2D and 3D benchmarks for quasi-static and dynamic
crack propagation to show the feasibility of our approach for modeling
fracture.

The paper is organized as follows. We begin with a short in-
troduction of the phase-field model for brittle fractures based on the
variational approach in Section 2. Subsequently, we present the nu-
merical implementation of the phase-field model in COMSOL in
Section 3. In Section 4, we examine some 2D and 3D numerical ex-
amples for cracks under quasi-static and dynamic loading. Finally, we
end with conclusions regarding our findings in Section 5.

2. Phase-field model for fracture

2.1. Theory of brittle fracture

Let us consider an arbitrary body �⊂Ω d (d∈ {1, 2, 3}) as shown in
Fig. 1. The body Ω has an external boundary ∂Ω and internal dis-
continuity boundary Γ. The displacement of body Ω at time t is denoted
by �⊂u x t( , ) d where x is the position vector. The displacement field
satisfies the time-dependent Dirichlet boundary conditions,

=x xu t g t( , ) ( , ),i i on ∂ ∈Ω Ω,gi and also the time-dependent Neumann
conditions on ∂ ∈Ω Ωhi . We also consider a body force �⊂b x t( , ) d

acted on the body Ω and a traction f(x, t) on the boundary ∂Ωhi.
A variational approach for fracture problems according to Griffith’s

theory has been proposed in [47]. It states that the required energy to
create a fracture surface per unit area is equal to the critical fracture
energy density Gc, which is also commonly referred to as the critical
energy release rate. The total potential energy Ψopt(u, Γ) can be ex-
pressed in terms of the elastic energy ψε(ε), fracture energy and energy
due to external forces:
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Isotropic linear elasticity is assumed and the elastic energy density
ψε(ε) is given by Miehe et al. [22]

= +ɛψ λ μ( ) 1
2

ɛ ɛ ɛ ɛii jj ij ijɛ (3)

where λ and µ are Lamé constants.
In addition, the variational approach [47] states that initiation,

propagation and branching of the crack Γ(x, t) at the time t∈ (0, T) for a

Fig. 1. Phase-field approximation of the crack surface.
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