Advances in Engineering Software 121 (2018) 39-58

Contents lists available at ScienceDirect |, S
ENGINEERING

SOFTWARE

Advances in Engineering Software i
journal homepage: www.elsevier.com/locate/advengsoft »

n-BEM: A flexible parallel implementation for adaptive, geometry aware, and = M)

Check for

high order boundary element methods g

Nicola Giuliani®?, Andrea Mola®, Luca Heltai®

SISSA—International School for Advanced Studies, Via Bonomea 265, Trieste 34136, Italy

ARTICLE INFO ABSTRACT

Keywords: Many physical phenomena can be modelled using boundary integral equations, and discretised using the
BEM boundary element method (BEM). Such models only require the discretisation of the boundary of the domain,
Fast multiple method making the setup of the simulation straightforward and lowering the number of degrees of freedom. However,
High order elements while many parallel efficient libraries are available for the Finite Element Method (FEM), the implementation of
Local refinement scalable BEM solvers still poses many challenges. We present the open source framework st-BEM (where it stands

MPI
Multi-threaded for parallel): a novel boundary element method solver, combining distributed and shared memory paradigms to
OpenSOURCE achieve high scalability. ©-BEM exploits high performance libraries and graph partitioning tools to deliver a

CAD parallel solver employing automatic domain decomposition, high order elements, local refinement capabilities,
and exact geometry-adaptivity (using CAD files). A preliminary fast multipole accelerator is included in the
implementation. Every aspect of the library is modular and easily extendible by the community. We discuss the
internal structure of the code, and present some examples to demonstrate the reliability and scalability of our

implementation.

1. Introduction

Many fields of engineering benefit from accurate and reliable sol-
vers for Boundary Integral Equations. Existing open source BEM solvers
(like, for example, BEM + + [55]) focus on ease of use, rather than
extensibility, and although they often offer convenient interfaces for
common scenarios, they do not focus on extensibility and flexibility of
the library infrastructure. In this work we propose a BEM library that
leverages one of the most actively developed open source libraries, the
deal.II library [4,7], to derive a novel implementation of the
Boundary Element Method (BEM) that couples several characteristics,
that cannot be found together in any other open source software for
BEM. In particular our library provides support for complex geometries,
high order elements, and local adaptivity that automatically respects
the CAD description of the underlying geometry. The library supports
hybrid parallelization combining shared and distributed memory
paradigms, and we provide a preliminary Fast Multiple Method (FMM)
solver. It is our opinion that a high performance BEM library that ex-
ploits high order elements with local refinement on complex surfaces
fills a gap in the literature and is a key aspect for the community to
solve interesting problems. We are aware that some aspects of our work
are not completely innovative, for instance we could exploit existing
high performance external FMM libraries instead of our own, that

* Corresponding author.
E-mail address: ngiuliani@sissa.it (N. Giuliani).

https://doi.org/10.1016/j.advengsoft.2018.03.008
Received 15 January 2018; Accepted 16 March 2018
0965-9978/ © 2018 Elsevier Ltd. All rights reserved.

would grant a significance performance gain but our efforts to manage
such interactions have failed. We remark that the library, since it is a
documented open source software, can be easily extended and im-
proved by the users community.

The most noteworthy equations which admit a Boundary Integral
Formulation are the Laplace equation, the Helmholtz equation
and the Stokes system. Such equations govern several physical phe-
nomena of both scientific and engineering interest. Boundary Integral
Formulations have been applied, among others, to problems involving
hydrodynamic flows [15,25,42,49,54], flow around aerodynamic lifting
bodies [20,39,45], structural mechanics [12], electrostatics [55],
quantum mechanics [59], and acoustics [2,19,32].

The most convenient aspect of the Boundary Integral Representation
—if the problem admits one— is that the solution at each point of the
domain can be expressed in terms of convolutions on the domain
boundaries between a fundamental solution and the boundary trace of
the solution and of its normal gradient. In the associated numerical
method (BEM), only the boundary of the domain must be discretised
with a computational grid, leading to a significant reduction in the
number of degrees of freedom of the discretized problem, if compared
to the more common Finite Elements (FEM) or Finite Volumes (FV)
approaches.

This reduction, however, comes with a drawback: the associated


http://www.sciencedirect.com/science/journal/09659978
https://www.elsevier.com/locate/advengsoft
https://doi.org/10.1016/j.advengsoft.2018.03.008
https://doi.org/10.1016/j.advengsoft.2018.03.008
mailto:ngiuliani@sissa.it
https://doi.org/10.1016/j.advengsoft.2018.03.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.advengsoft.2018.03.008&domain=pdf

N. Giuliani et al.

discrete systems are dense, their assembly has a computational cost of
order O(n?), and their numerical solution is far from trivial. Moreover if
one considers mixed Neumann Dirichlet boundary value problems the
final linear system is generally ill conditioned. If one choses to assemble
the full matrix on a regular computer/laptop/workstation, the number
of degrees of freedom is roughly limited to 0(10%), mainly due to the
computational effort required to assemble and store the 0(10%) ele-
ments of the system matrix. Increasing the number of unknowns makes
the assembly of such matrices almost unbearable also from a memory
point of view. Storing a full matrix for 40 thousands double precision
unknowns already requires more than 10 GB in RAM memory, which is
close to the limit of user-level desktops.

A number of steps are possible to improve the applicability of BEM.
We start by mentioning high order elements, which reduce the number
of degrees freedom required to obtain a specific tolerance for problems
with smooth solutions. High order BEMs are more attractive when
compared to their finite element counterparts, since for finite elements,
increasing the order results in a less sparse, more ill conditioned, system
matrix. For BEMs the matrices are already full, and this is no longer a
disadvantage. When non smooth problems are considered, high order
elements can be combined with local refinement techniques to reduce
the final size of the problem. In general these two techniques together
work well when the domain itself is smooth. They are are no longer
sufficient when the domain is only Lipschitz: if the domain presents a
sharp edge the normal vector has a jump across such interface, inducing
a jump also in the normal component of the solution gradient. While
this is not an issue for discontinuous elements of arbitrary orders, it may
be an issue if we consider continuous elements. A possible solution is
the so-called double nodes technique [29], where continuity is pre-
served only on the solution, while its normal gradient is allowed to have
a jump across physical edges. The usage of this technique allows for an
accurate solution of mixed Neumann Dirichlet boundary value pro-
blems on domains with sharp edges. In recent years the developing of
Computer Aided Design technologies has posed new challenges to both
FEM [16] and BEM communities [31]. The integration of complex CAD
geometries in BEM widens the application possibilities [43]. We exploit
refining and integration strategies directly on the exact geometry spe-
cified by user provided CAD files.

As the size of problems increases, none of these techniques alone is
enough to reduce memory problems. Splitting of the problem into
subdomains and distributing its execution over multiple CPUs is one
possible option, which is also beneficial for wall-time computational
costs. Domain decomposition can be achieved at the partial differential
equation level, or at the algebraic level. Each approach has its own
advantages and disadvantages, but both methods increase the limit on
the degrees of freedoms by exploiting distributed memory techniques,
and reducing the amount of degrees of freedom handled by each single
processor.

In recent years many library have been developed to address the
BEM requirements. In [48,55] the authors present an effective im-
plementation of high order boundary element methods. In [55] the
boundary element method is parallelized using a shared memory par-
allelization and the authors focus on the implementation of different
kernels using high order methods, while in [48] the authors present a
hybrid parallelization scheme and the combination of high order
methods with adaptive quadrature formulas. To the best of our
knowledge, no opensource library is available in the literature that
combines high order elements with local refinement strategies for
boundary element methods on arbitrary geometries.

In this work, we present a new opensource BEM library that gathers
together several algorithms and ideas in a flexible, modular, and ex-
tendible way, exploiting both shared and distributed memory paralle-
lisms. We split the computational effort at the algebraic level for

40

Advances in Engineering Software 121 (2018) 39-58

distributed parallelization, by combining a domain decomposition
method based on the graph partitioning tool METIS [21], with the high
performance computing library Trilinos [33] used to tackle distributed
linear algebra. We use Intel Threading Building Block (TBB) [50] to
exploit multicore architectures. A similar combination has been suc-
cessfully applied to achieve high computational efficiency in fluid dy-
namics, as demonstrated in ASPECT [36]. In our BEM library the dis-
tributed memory parallelism leads to very high performance benefits,
due to the structure of the matrix assembling procedures.

We present an application of our BEM methodologies to a model
Laplace problem, providing both convergence and scalability tests, to
assess the accuracy, and to verify the performance of our im-
plementation. However, we remark that the same coding principles can
be straightforwardly applied to any BIE solver (see, for example, [23]
for the Stokes boundary integral formulation). The finite element li-
brary deal.II [4,6,7] is the base of our BEM implementation. The use
of deal.IT allows for a combination of high order continuous or dis-
continous finite elements together with local refinement strategies, in-
cluding the possibility to treat sharp edges using either the double
nodes techniques or discontinuous finite elements.

In recent years many methods have been developed to approximate
the action of a BEM matrix-vector product in order O(n) operations
instead of assembling the full matrix. Examples of such methods are the
Fast Multiple Method [28] or Hierarchical matrices [26]. Succesful
BEM libraries and solvers should feature some or all of these expedients
aimed at the reduction of the main BEM bottle-necks. Many high per-
formance libraries take advantage of hierarchical matrices, or H matrix
concept. For example BETL [34], is based on AHMED [9,10], which is a
highly optimised H-matrix library. Alternative acceleration methods
based on non uniform fast Fourier transforms have been recently de-
veloped in [3], with very promising results. Parallelisation of such
techniques is at the moment still lacking. For most BEM libraries the
fast multiple method is the acceleration method of choice, as it guar-
antees very high reductions from the computational point of view [28].
Greengard proposed a pure multithreaded version in 1990 [27], and
only recently Yokota et al. developed a parallel version of the algorithm
using hybrid coding techniques [60]. Several works are dedicated to
assessing the applicability of FMMs to exascale problems (see, e.g., [8]
and the references therein). In many cases the panels coming from the
boundary discretisation are directly used in order to set up the FMM
hierarchical space subdivision. This approach leads to some modifica-
tion to the algorithm in order to guarantee that all mathematical as-
sumptions are properly satisfied [48].

We have performed a preliminary acceleration test of 7t-BEM using a
FMM. Given the extreme flexibility and generality of m-BEM the cou-
pling with an existing FMM library, as the one depicted in [60], is ex-
tremely difficult. Moreover, the relative small size of the problem (at
most O(n®)) sets us in a different setting with respect to exascaling li-
braries as the ones developed in [8], and we don’t approximate near
BEM interaction by means of dielectric models, or BIIBE, as in [61]. We
developed our own implementation of FMM capable of dealing with the
characteristics of n-BEM. High order methods, local refinement and
double nodes handling bring a considerable increase in the algorithm
complexity when compared to classical BEMs, making it mandatory to
use hybrid parallelisation techniques. A hybrid MPI-TBB parallelisation
strategy allows for an optimisation of the various algorithms, while
maintenance and ease of use is achieved by exploiting the deal21kit
library [52]. For the sake of clarity we report a comparison between the
presented library and notable softwares available in the literature in
Table 1.

The library we present is the only one that supports CAD based local
refinement. Our contribution is structured as follows: in Section 2 we
introduce the mathematical problem, while in Sections 3 and 4 we



Download English Version:

https://daneshyari.com/en/article/6961291

Download Persian Version:

https://daneshyari.com/article/6961291

Daneshyari.com


https://daneshyari.com/en/article/6961291
https://daneshyari.com/article/6961291
https://daneshyari.com/

