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a b s t r a c t 

This paper presents a semi-parametric mixed-effect regression approach for analyzing and modeling 

earthquake ground motions, taking into account the correlations between records. Using kernels, the pro- 

posed method extends the classical mixed model equations to complicated relationships. The predictive 

equation is composed of parametric and nonparametric parts. The parametric part incorporates known 

relationships into the model, while the nonparametric part captures the relationships which cannot be 

cast into a simple parametric form. A least squares kernel machine is used to infer the nonparametric 

part of the model. The resulting semi-parametric model combines the strengths of parametric and non- 

parametric approaches, allowing incorporation of prior, well-justified knowledge into the model while 

retaining flexibility with respect to the explanatory variables for which the functional form is uncertain. 

Equations for pointwise confidence and prediction intervals around the conditional mean are provided. 

The validity of the proposed method is demonstrated through numerical simulations and using recorded 

ground motions. 

© 2016 Civil-Comp Ltd. and Elsevier Ltd. All rights reserved. 

1. Introduction 

The main goal in seismic design of structures is to ensure that 

the structure will perform as intended throughout its service life, 

when subjected to ground shaking. While the magnitude and lo- 

cation of future earthquakes cannot be known with certainty, the 

probability distribution of the intensity of ground shaking expected 

at a given site can be described using Probabilistic Seismic Hazard 

Analysis (PSHA). At its most basic form, PSHA can be thought of as 

a two-step process: 1) Characterization of the distribution of mag- 

nitude and source-to-site distances from each potential earthquake 

source, and 2) Characterization of the distribution of the intensity 

of the ground shaking that would result from each scenario. The 

second step is achieved using Ground Motion Prediction Equations 

(GMPEs) which describe the relationship between a ground mo- 

tion intensity variable and a set of predictors containing, at a min- 

imum, moment magnitude, and source-to-site distance. Both the 

conditional mean of the target variable and the prediction uncer- 

tainty have major implications in the development of seismic code 

provisions, insurance calculations, and public policy decisions. 

A typical GMPE has the following form 

y i j = f ( x ij ) + u i + e i j , (1) 
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where y ij is the target variable, typically chosen to be the loga- 

rithm of an intensity measure corresponding to the j th recording 

from the i th earthquake, f ( x ij ) is a parametric function of predic- 

tive variables x ij , u i is the inter-event residual and e ij is the intra- 

event residual. Both u i and ɛ ij are assumed to be zero-mean Gaus- 

sian random variables. 

Two methods are common in fitting Eq. (1) to ground motion 

data: one-stage and two-stage methods. One-stage methods [1–

3] estimate the model parameters simultaneously by maximizing 

the likelihood function, while two-stage methods determine the 

magnitude and distance dependence on separate steps. The first 

stage estimates the distance dependence and assigns an amplitude 

factor to each earthquake. The second stage estimates the magni- 

tude dependence by maximizing the likelihood of the amplitude 

factors determined in the first stage. Joyner and Boore [4] have 

shown that both methods are equivalent in terms of bias and vari- 

ance. 

While traditional GMPEs involved a small set of predictors, re- 

cent growth in seismic databases and advances in computer tech- 

nology have led to the creation of sophisticated GMPEs involving 

tens of parameters. The increase in the number of parameters gives 

the model the flexibility to describe a large class of functions, how- 

ever, this flexibility often comes at the expense of increased sus- 

ceptibility to overfitting, especially when least squares criterion is 

used without any complexity penalty. As correct specification of 
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the functional form of a GMPE is critical to its predictive perfor- 

mance, whether the size of the available ground motion databases 

justifies this level of complexity is a question of growing concern 

in the earthquake engineering community. 

A nonparametric approach, which does not require a fixed para- 

metric form may alleviate the problem of model misspecification. 

However, it also does not allow incorporation of known relation- 

ships into the model. A semiparametric approach combines the 

strengths of parametric and nonparametric approaches, allowing 

the model to include known relationships, and retaining flexibil- 

ity with respect to the predictors whose relation to the target vari- 

able cannot be specified with certainty. In conjunction with a com- 

plexity penalty, the overfitting susceptibility of the semiparametric 

model can be controlled. 

In this study, we consider the semi-parametric model 

y i j = f ( x ij ) + h 

(
s ij 

)
+ u i + e i j , i = 1 : N, j = 1 : n i , (2) 

where f is a parametric function, h is a nonparametric function, 

u i ∼ N( 0 , σ 2 
u ) is the random effect term associated with event i , 

and e i j ∼ N( 0 , σ 2 
r ) is the error term associated with y ij . The vec- 

tors x ij and s ij contain the predictors used in f and h , respectively. 

When f is a linear combination of the fixed effects, and the non- 

parametric function h is assumed to lie in a Reproducing Kernel 

Hilbert Space (RKHS), the solution can be obtained by solving a 

linear system of equations. 

The main advantage of the semi-parametric model over para- 

metric models is the flexibility it provides in modeling compli- 

cated relationships when a mathematical form cannot be specified 

with reasonable confidence, while allowing incorporation of prior 

knowledge regarding the functional form with respect to a sub- 

set of the explanatory variables. In addition, unlike existing kernel- 

based ground motion models (e.g. [5,6] ), the proposed model has 

the ability to take into account the correlations between records. 

This paper is based upon Tezcan et al. [7] , but the current paper 

includes the following extensions. First, recognizing that the pro- 

posed estimator is a linear smoother, we derive equations for con- 

ditional bias and variance based on the associated smoother ma- 

trix. Next, using these two quantities, we construct bias-corrected 

pointwise confidence and prediction intervals around the condi- 

tional expectation. With this extension, the uncertainty in the pre- 

dictions is quantified. 

The remainder of this paper is organized as follows. Section 2 is 

devoted to a brief overview of the Least Squares Kernel Machine 

(LSKM) and the linear Mixed Model Equations (MME), and exam- 

ines the connection between them. Section 3 presents the semi- 

parametric mixed-effect model. Following a derivation of the re- 

gression function, equations for bias-corrected confidence and pre- 

diction intervals around the conditional expectation are presented. 

Section 4 shows a demonstrative example, using a dataset con- 

taining 182 records from 23 shallow earthquakes in western North 

America. Section 5 presents simulation studies comparing the ac- 

curacy and computational efficiency of the proposed approach to 

the conventional, parametric approach. Finally, Section 6 presents 

the conclusions of this study. 

2. Relationship between least squares kernel machines and 

linear mixed models 

This section is intended to demonstrate the mathematical con- 

nection between least squares kernel machines and linear mixed 

models. Following a brief overview of the two approaches, the least 

squares kernel machine model is presented as a special case of the 

linear mixed model. This connection allows constructing a nonlin- 

ear model using Henderson’s mixed model equations, which is a 

system of linear equations. 

2.1. Least squares kernel machine 

Kernels offer an efficient way to formulate nonlinear general- 

izations of linear algorithms that are based on inner products. In- 

troduced in 1960s [8] , kernel-based learning has been increasingly 

used in a multitude of data analysis applications in various disci- 

plines. 

The Support Vector Machine (SVM) [9] is a supervised, kernel- 

based algorithm that can be used in classification and regression 

applications. The SVM finds the solution of a constrained optimiza- 

tion problem, which, in the primal form, is expressed in terms of a 

nonlinear feature mapping function, φ( x ). Through introduction of 

Lagrange multipliers and a kernel function K( x i , x j ) = φ( x i ) 
T φ( x j ) 

satisfying the Mercer’s condition [10] , the primal form is cast into 

the dual form which is often easier to solve. 

Least Squares Kernel Machine (LSKM) [11] was recently intro- 

duced as a variant of the classical SVM classifier, where the in- 

equality constraints are replaced by equality constraints. This re- 

formulation allows solving the SVM problem by reducing the cor- 

responding convex quadratic programming problem to a linear sys- 

tem of equations. In addition to offering sim pler software im ple- 

mentation and increased numerical stability, this approach allows 

extension of the classical SVM to a wider range of problems in data 

analysis and pattern recognition [12] . 

The use of kernels allows solving regression problems by per- 

forming a ridge regression in the feature space [13,14] . Given an 

input matrix X ∈ R 

N×d representing the coordinates of N points, 

x 1 , x 2 , . . . , x N , in a d -dimensional space and the corresponding out- 

put vector y ∈ R 

N×1 , and assuming that each observation is related 

to the corresponding input as 

y i = w 

T φ( x i ) + b + e i , i = 1 , 2 , .., N, (3) 

the predictive model f (x ) = w 

T φ(x ) + b is obtained by minimiz- 

ing the objective function 

1 

2 

w 

T w + 

γ

2 

N ∑ 

i =1 

e 2 i (4) 

under the set of N constraints given in Eq. (3) , using a penalty 

parameter γ . Introducing Lagrange multipliers αi , i = 1 , . . . , N, the 

Lagrangian function is written as 

L ( w , b, e , α) = 

1 

2 

w 

T w + 

γ

2 

e T e −
N ∑ 

i =1 

αi 

[
w 

T φ( x i ) + b + e i − y i 
]
. 

(5) 

where e = [ e 1 , e 2 , . . . , e N ] 
T and α = [ α1 , α2 , . . . , αN ] 

T . Optimal val- 

ues of w , b, e i and αi are found by locating the stationary 

points of the Lagrangian function given in Eq. (5) . Using S = 

[ φ( x 1 ) , φ( x 2 ) , . . . , φ( x N ) ] 
T , the optimality condition can be sum- 

marized as ⎡ ⎢ ⎢ ⎢ ⎣ 

I k 0 k 0 k ×N −S T 

0 

T 
k 

0 0 

T 
N 1 

T 
N 

0 N ×k 0 N γ I N −I N 

S 1 N I N 0 N 

⎤ ⎥ ⎥ ⎥ ⎦ 

⎡ ⎢ ⎣ 

w 

b 
e 
α

⎤ ⎥ ⎦ 

= 

⎡ ⎢ ⎣ 

0 k 

0 

0 N 

y 

⎤ ⎥ ⎦ 

(6) 

where I p is an identity matrix of size p , 0 p × q is the p × q matrix 

of zeros, 1 p and O p are the p × 1 vectors of ones and zeros respec- 

tively, and k is the dimension of the feature space. Elimination of 

vectors w and e leads to [
0 1 

T 
N 

1 N � + ( 1 /γ ) I N 

][
b 
α

]
= 

[
0 

y 

]
(7) 

where � = S S T is the kernel matrix of size N × N where �i j = 

K( x i , x j ) . If the square matrix in Eq. (7) is invertible, b and α can 
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