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a b s t r a c t 

This paper deals with a numerical solution of an incompressible Navier-Stokes flow on non-uniform do- 

mains. The numerical solution procedure comprises the Meshless Local Strong Form Method for spatial 

discretization, explicit time stepping, local pressure-velocity coupling and an algorithm for positioning of 

computational nodes inspired by Smoothed Particles Hydrodynamics method. The presented numerical 

approach is demonstrated by solving a lid driven cavity flow and backward facing step problems, first 

on regular nodal distributions up to 315,844 (562 ×562) nodes and then on domain filled with randomly 

generated obstacles. It is demonstrated that the presented solution procedure is accurate, stable, conver- 

gent, and it can effectively solve the fluid flow problem on complex geometries. The results are presented 

in terms of velocity profiles, convergence plots, and stability analyses. 

© 2016 Civil-Comp Ltd. and Elsevier Ltd. All rights reserved. 

1. Introduction 

Computational fluid dynamics (CFD) is a field of a great interest 

among researchers in many fields of science, e.g. studying mathe- 

matical fundaments of numerical methods, developing novel phys- 

ical models, improving computer implementations, and many oth- 

ers. Pushing the limits of all the involved fields of science helps 

community to deepen the understanding of several natural and 

technological phenomena. Weather forecast, ocean dynamics, wa- 

ter transport, casting, various energetic studies, etc., are just few 

examples where fluid dynamics plays a crucial role. The core prob- 

lem of the CFD is solving the Navier-Stokes Equation [1] or its vari- 

ants, e.g. Darcy or Brinkman equation for flow in porous media. 

This paper focuses on a solution of the Navier-Stokes equation in a 

randomly generated domain with a local numerical approach. 

Usually, numerical methods such as the Finite Volume Method 

(FVM), Finite Difference Method (FDM), or the Finite Element 

Method (FEM) are typically used for solving fluid flow problems. 

Although classical methods, especially FEM, offer several advanced 

features, the meshing of realistic domains still remains one of the 

most cumbersome and time-demanding step in the entire numer- 

ical solution process, since it often involves a significant user’s as- 

sistance. In past few years the coupling of Computer Aided De- 

sign (CAD) and FEM analysis [2] alleviates that burning problem. 

The approach is also referred to as an isogeometric analysis and 
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is focused on integration of FEM into conventional Non-Uniform 

Rational Basis Splines (NURBS) based CAD environments. On the 

other hand, the most intuitive and straightforward to implement 

is definitely the FDM approach that performs excellent as long as 

the treated domain can be described with an equidistant orthogo- 

nal mesh, which unfortunately covers only limited spectra of prob- 

lems. 

A promising alternative is a class of meshless methods (MM) 

that are based on scattered discretization nodes. MMs originate 

in the seventies with Smoothed Particles Hydrodynamics (SPH) 

[3] and develop further with the Diffuse Element Method (DEM), 

the Meshless Petrov-Galerkin method (MPG), the Element Free 

Galerkin method (EFG), etc. [4] . The SPH, an Eulerian kernel based 

approximation method, is an effective tool for simulations of prob- 

lems where mesh-based method fail, for example breaking waves, 

gas problems and many more. However, SPH suffers from incon- 

sistency due to the combination of Eulerian kernel and Lagrangian 

description of motion. The more consistent particle method with 

Lagrangian kernels has been later introduced for solution of solid 

mechanics problems [5] . 

In this paper, one of the simplest class of MMs, Meshless Local 

Strong Form Method (MLSM), a generalization of methods which 

are in literature also known as Diffuse Approximate Method (DAM) 

[6] , Local Radial Basis Function Collocation Methods (LRBFCM) 

[7] , Generalized FDM [8] , Collocated discrete least squares (CDLS) 

meshless [9] , etc., is used. Although each of the named meth- 

ods poses some unique properties, the basic concept of all local 

strong form methods is similar, namely, to approximate treated 
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fields with nodal trial functions over the local support domain. The 

nodal trial function is then used to evaluate various operators, e.g. 

derivation, integration, and after all, approximation of a considered 

field in arbitrary position. The MLSM could easily be understood as 

a meshless generalization of the FDM, however much more power- 

ful. The MLSM has an ambition to avoid using pre-defined relations 

between nodes and shift this task into the solution procedure. The 

final goal of such an approach is higher flexibility in complex do- 

mains, moving boundaries and nodal adaptivity. 

There are several publications regarding adaptive MM. The h- 

refinement, i.e. the adaptivity in terms of adding and/or remov- 

ing nodes on/from the domain has been demonstrated with the 

global Radial Basis Function Collocation Method [10] in solution 

of nearly singular Partial Differential Equations (PDE), as well as 

local MMs in solution of coupled Burgers’ equation [11] and tor- 

sion problem [12] . The meshless r-refinement approach, where the 

positions of the nodes are adjusted to obtain an optimal approxi- 

mation with the total number of the nodes unchanged, has been 

demonstrated in solution of phase field model [13] . In general, the 

meshless adaptivity has been thoroughly demonstrated in crack 

propagation problems [14–17] . An important part of the adaptivity 

is the error estimate that determines the nodal density that has 

been discussed in [11,18] . 

Although the meshless methods do not require any topologi- 

cal relations between nodes and even randomly distributed nodes 

could be used [19] , it is well-known that using regularly dis- 

tributed nodes leads to more accurate and more stable results 

[20–22] , which is also confirmed in this paper. Therefore, despite 

meshless seeming robustness regarding the nodal distribution, a 

certain effort has to be invested into the positioning of the nodes 

and this paper, to some extent, deals with this problem. 

The rest of the paper is organized as follows; in Section 2 the 

MLSM principle is explained, in Section 3 the lid driven cavity 

and backward facing step problems together with base elements of 

the solution procedure are presented, Section 4 is focused on dis- 

cussion of results, and finally, paper offers some conclusions and 

guidelines for future work in last section. 

This paper is extension of results presented on Ninth Interna- 

tional Conference on Engineering Computational Technology [23] . 

2. Numerical methodology 

2.1. Meshless LOCAL STRONG FORM METHOds (MLSM) 

The core of MLSM presented in this paper is a local approxima- 

tion of a considered field over the overlapping local support do- 

mains, i.e. in each node a considered field is approximated over a 

small local sub-set of neighbouring N S nodes. The trial function is 

thus introduced as 

θ (p ) = 

N B ∑ 

n =1 

αn �n (p ) , (1) 

with N B , αn , �n , p ( p x , p y ) standing for the number of basis func- 

tions, approximation coefficients, basis functions and the position 

vector, respectively. The type of approximation, the size of support 

domain, and the type and number of basis function can be general. 

Although the selection of basis function �n is general, several 

researchers follow the results from Franke’s analysis [24] and use 

Hardy’s Multiquadrics, however in this work the monomials are 

used based on the results presented in [25] . The goal here is to 

solve a Navier-Stokes equation, i.e. a second order PDE, and to ob- 

tain non-trivial first and second derivatives a minimal basis of five 

monomials ( 1 , p x , p y , p 2 x , p 
2 
y ) is used. Therefore, to determine cor- 

responding coefficients at least five support nodes are required. In 

such setup, i.e. support domain size is the same as the number 

of basis functions ( N S = N B ) , the determination of coefficients αn 

simplifies to solving a system of linear equations that results from 

expressing Eq. (1) in all support nodes. The system can be written 

in vector form as 

θ = �α, (2) 

where θ stand for field values in support nodes, � basis matrix 

( �i j = �i ( p j ) ) and α vector of coefficients. The LRBFCM that has 

been recently used in various problems [26, 27] uses such colloca- 

tion on different sizes of support domain, depending on the prob- 

lem tackled. 

If the number of support nodes is higher than the number of 

basis functions N S > N B Weighted Least Squares (WLS) approxi- 

mation is used to solve over-determined system ( 2 ), again, con- 

structed by expressing ( 1 ) in all support nodes. An example of such 

approach is DAM [6] that was originally formulated to solve fluid 

flow in porous media. DAM uses six monomials for basis and nine 

nodded support domains to evaluate first and second derivatives of 

physical fields required to solve problem at hand. Note that WLS 

with a Gaussian weighting 

W ( p ) = exp 

( 

−
( ‖ 

p ‖ 

σ p min 

)2 
) 

(3) 

is used, where σ stands for weight parameter and p min for the 

distance to the first support domain node. 

Our goal is to apply partial operator on a considered field 

Lθ ( p ) = 

N B ∑ 

n =1 

αn L �n (p ) , (4) 

where L stands for general differential operator. Considering 

Eq. (4) by using explicit computation of approximation coefficients 

α = �−1 θ results in 

Lθ ( p ) = 

N B ∑ 

n =1 

( 

N S ∑ 

m =1 

�−1 
nm 

θm 

) 

L �n (p ) . (5) 

Using merely few summation rules the Eq. (5) can be rewritten in 

a more convenient form 

Lθ ( p ) = 

N S ∑ 

m =1 

χ L 
m 

(p ) θ ( p m 

) , (6) 

where the shape function χ L 
m 

is introduced as 

χ L 
m 

(p ) = 

N B ∑ 

n =1 

�−1 
nm 

L �n (p ) , (7) 

with �−1 standing for inverse/pseudo inverse of the approximation 

system matrix. 

The presented formulation is convenient for implementation 

since most of the complex operations are performed only when 

nodal topology changes, i.e. when the system ( 2 ) has to be re- 

evaluated. In the main simulation, the pre-computed shape func- 

tions are then convoluted with the vector of values in the support 

to evaluate the desired operator, refer to Eq. (16) for example. The 

presented MLSM approach is even easier to handle than the FDM, 

however despite its simplicity it offers many possibilities for treat- 

ing challenging cases, e.g. nodal adaptivity to address regions with 

sharp discontinuities or p-adaptivity to treat obscure anomalies in 

physical field. The stability versus computation complexity and ac- 

curacy can be regulated simply by changing number of support 

nodes, etc. All these features can be controlled on the fly during 

the simulation. 
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