
Contents lists available at ScienceDirect

Advances in Engineering Software

journal homepage: www.elsevier.com/locate/advengsoft

An effective and user-friendly web application for the collaborative analysis
of steel joints

J. Gracia⁎,a, E. Bayob

aUniversity of Oviedo, Spain
bUniversity of Navarra, Spain

A R T I C L E I N F O

Keywords:
Web applications in the Internet
Software as a service
Structural analysis of steel joints
Eurocode 3

A B S T R A C T

The Internet has increased its potential exponentially since its inception. This progress has been possible due to
new standards and technologies, which have also allowed the development of a new type of web applications
that are fully integrated in web browsers. In addition, structural analysis has become a collaborative task in
which different people have to share information and outputs of analysis programs. In this paper, an effective
and user-friendly web application for the collaborative analysis of steel joints is presented. The latest cutting
edge technologies in the Internet are used to address fundamental issues inherent in structural analysis software
such as visualisation, interaction, and structural evaluation. Specifically, WebGL API, part of the HTML5 stan-
dard, is used to solve the visualisation issues of the proposed application. A rigorous analysis of simple and rigid
structural joints is performed according to the standards and criteria set by the Eurocode 3.

1. Introduction

Structural engineers have to analyse and design increasingly com-
plex structures and this cannot be done without sophisticated en-
gineering software. This software is continuously benefiting from ad-
vances in software engineering. The first revolution started in early
1980s with the advent of personal computers. Monochrome command
line applications were superseded by a generation of software with
powerful graphic interfaces. They were capable of rendering complex
3D structures in realtime. Later, the Internet revolution, which began in
the early 1990s, started a technological race that so far has increased its
velocity exponentially, becoming exceedingly dynamic. Structural
analysis software has also benefited from this revolution.

The work of a structural engineer includes several tasks: structural
sketch and analysis, dimensioning of main elements (beam, columns,
bracing systems, etc.) and joint (also called connection) detailing,
among others. Nowadays, structural analysis, which requires a high
level of computation, can easily be adapted to distributed computing
environments over Internet by means of structural analysis web ser-
vices.

In regard to previous works developed in this area, Yang et al. [17]
developed a generic web-based platform for conducting model-based
numerical simulations on line. Vacharasintopchai et al. [14] proposed a
framework to join web services and the semantic web in the field of
computational mechanics. Chen and Lin [4] presented an Internet-

based finite element analysis framework supported by a java client
application and a parallel computing environment. Also, Chen and Lin
[5] proposed an Internet-based computing framework for the simula-
tion of structural systems composed of two levels of parallel processing.
Most of this research was focused on the server side; more specifically
on ways to distribute the computing tasks that are necessary to solve
the large sparse matrices involved in structural analysis.

More recently, Gracia and Bayo [8] developed an integrated 3D web
Application for Structural Analysis Software as a service. In this article,
a web application, which allowed navigating, analysing and visualizing
pre-defined trusses, was presented. The geometry, loads and boundary
conditions were predefined and the web application did not allow for
changes. The 3D visualization requirements were reduced to render
points and lines. According to those requirements, the development was
done with plain JavaScript and WebGl [11], a low level API to handle
3D visualization.

However, as mentioned before, structural engineers not only deal
with structural analysis but also with joint (or connection) detailing.
Currently, there are several commercial applications for joint analysis.
Most of them perform automatic designs. However, a desktop approach
is contrary to current trends in the global computing market where
computer tools based on Hardware as a Service (Haas), Platform as a
Service (PaaS), and Software as a Service (SaaS) are attracting more
users.

This paper presents a user-friendly web application for the

https://doi.org/10.1016/j.advengsoft.2018.02.007
Received 21 March 2017; Received in revised form 8 January 2018; Accepted 25 February 2018

⁎ Corresponding author.
E-mail address: graciajavier@uniovi.es (J. Gracia).

Advances in Engineering Software 119 (2018) 60–67

0965-9978/ © 2018 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/09659978
https://www.elsevier.com/locate/advengsoft
https://doi.org/10.1016/j.advengsoft.2018.02.007
https://doi.org/10.1016/j.advengsoft.2018.02.007
mailto:graciajavier@uniovi.es
https://doi.org/10.1016/j.advengsoft.2018.02.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.advengsoft.2018.02.007&domain=pdf


collaborative analysis of 2D steel joints, focused on manual design ra-
ther than automatic design. Structural engineers working on building
rehabilitation will welcome this characteristic; they usually need to
check existing joints. This new application has been implemented for
two typologies of joints: simple beam to column joint with bolted an-
gles, and fully rigid beam to column joint with extended end plate.
Although this application is aimed at these two types of joints, it has
been designed with modularity in mind so that other types of joints can
be easily added.

This research primarily deals with the web software architecture
necessary to provide a user experience similar to that provided by
desktop applications. Interaction and visualisation are critical for this
purpose. The application has been developed as a stand-alone front-end
web application using current Internet technologies, like HTML5 [16]
and WebGl for 3D visualisation. Once it is downloaded and rendered by
the browser, there is no need for an Internet connection. The only ex-
ception is to persist the data (enable collaborative work), which re-
quires a little back-end server application.

The 3D Visualization is more complex than that of Gracia and Bayo
[8]; this new application deals with 3D solids instead of lines and
points, and it also allows changing the geometry. Each time the input is
changed, the 3D Visualization is updated in real-time. Consequently,
the authors have used a different approach: instead of a low-level 3D
API, a third-party library has been chosen. Moreover, the model-view-
controller architecture to handle this interaction is much more com-
plex. For this reason, a model-view-controller framework is used in-
stead of plain JavaScript. As part of this research, a brief revision of
modern JavaScript frameworks for developing web applications is also
presented.

2. Web application architecture

Like desktop applications, web software is based on design patterns
or architectural schemes. In this type of application the most important
architectural software decisions are: 3D visualisation, client–server
communication and application logic. Hereafter, those issues are briefly
addressed.

2.1. 3D visualization in the web

Nowadays, 3D visualisation is critical in any application targeted at
structural analysis. Visualisation feedback is necessary to perceive what
it is being modelled and designed. Desktop applications have supported
3D content since the development of the first window based operating
system. However, support of 3D content in web browsers was not so
common until the development of the WebGL standard.

Before the development of this standard several solutions had been
provided. The first approach was Virtual Markup Modeling
Language [13] that was superseded by X3D [15]. X3D was the ISO
standard, with XML-based file format for representing 3D computer
graphics in terms of geometry and material. However, these languages
only defined the geometry, and consequently, a 3D plugin was neces-
sary by the browser to render the content. The main solutions to render
3D content in web browsers were: Adobe Air framework, Microsoft
ActiveX, and Java applets, which were probably the most commonly
used. Specifically related to structural analysis applications, Chen et al.
[6] presented a prototype development of web-based structural en-
gineering systems to provide analytical services over the Internet. One
of the proposed applications relied on serving 3D content by means of
Java applets using GL4Java interface packages, that is, an API to de-
velop OpenGl applications on Java.

However, all the solutions mentioned above suffer from the same
weakness: the technology behind them is based on either several ab-
straction layers or a virtual machine above the hardware layer. This
means that a lot of hardware resources are consumed to step through
these layers (or virtual machine) before the graphics card displays the

data. In addition, potential security issues may constitute another real
weakness. It is the opinion of the authors that the applications devel-
oped using those technologies are not fully integrated web applications.
The web browser is only used to download byte-code applications that
are executed by the Java Virtual Machine (JVM) or the plug-in. At this
stage the browser is no longer needed. Moreover, as shown by Gracia
and Bayo [8], WebGl performance is better than Java applets, starting
from a factor of two for low complexity models and reaching a factor of
seven for complex models.

WebGl, developed by Khronos Group, is an API specification based
on OpenGL for Embedded Systems 2.0 (OpenGL ES) that is also based
on OpenGL 2.0 specification. OpenGL 2.0 is an open source standard
API for the development of cross-platform 3D desktop applications. This
API allows direct communication between the application and the
graphics hardware layer with high performance and optimised use of
resources. WebGl is widely supported by main web browsers. With this
technology JavaScript code inserted in web applications can directly
handle the communication with the graphics card. Direct communica-
tion means better performance and reuse of computer graphics tech-
niques only available in traditional desktop applications.

However, WebGL, following OpenGL design philosophy, is a low-
level API which requires solid knowledge on computer graphics and
advance coding skills. Currently, there are several WebGL JavaScript
libraries available which provide higher level API to render 3D content.
Some of them are oriented to game development but the most relevant
ones are general purpose [1,10,12].

Although it is possible to develop a 3D web application only with
WebGL low-level API [8] in this article a high-level API has been
choosen. Three.js [2] library is preferred instead of plain WebGL.

2.2. Client–server communication channel

Stand-alone web applications do not need to handle communica-
tions with the server; the application files are downloaded auto-
matically by the web browser. However, if data persistence is required
for collaborative purposes, then client–server communication must be
addressed. A reliable mechanism of communication and data exchange
format are needed to speed up client–server interaction.

Unlike traditional client–server applications, the development of
web applications involve protocols and data formats limited to those
allowed by the browser. Currently they allow several protocols, and the
main two are: XML HTTP Request (XHR) and Web Sockets (WS).
Although both of them are considered matured technologies, the former
is best suited for short one-way asynchronous communications while
the latter is better for two-way communications. The client application
used in this paper makes a unique request to the server, and therefore
XHR is preferred.

Once the communication method is addressed, data exchange
format should be considered. A HTTP protocol was designed to allow
the transmission of any kind of data. Originally, XHR was designed to
work with eXtended Markup Language (XML) data; however, aside
from its features, it has a major drawback, browsers do not have native
support to parse and serialise XML. In this application, the main server
tasks are to persist and to distribute data, no data processing is done by
the server. Hence, the server does not condition the data format, only
the browser does. It stores data in memory as JavaScript objects, then
JavaScript Object Notation (JSON) format is selected as data exchange
format. Its main benefits over XML are: it runs faster, the data structure
is simpler, and the browsers have native support to serialise and parse.

2.3. Application logic

The model-view-controller (MVC) pattern (Fig. 1) is a classic pro-
cedure to develop interactive desktop applications. It relies on a clean
separation of objects into one of three categories: models for main-
taining data, views for displaying all or a portion of the data, and

J. Gracia, E. Bayo Advances in Engineering Software 119 (2018) 60–67

61



Download English Version:

https://daneshyari.com/en/article/6961349

Download Persian Version:

https://daneshyari.com/article/6961349

Daneshyari.com

https://daneshyari.com/en/article/6961349
https://daneshyari.com/article/6961349
https://daneshyari.com

