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A B S T R A C T

In this study, the novel sensitivity reanalysis methods are suggested to obtain the static displacement sensitivity
to local modifications efficiently. Details of displacement sensitivity formulations are deduced from the dis-
placement reanalysis equations of Independent Coefficients (IC) and Indirect Factorization Updating (IFU)
strategies. Moreover, the performances of the proposed sensitivity reanalysis methods are investigated to
compare with Combined Approximation (CA) methods. Different numerical examples and efficient comparison
are performed to confirm the accuracy and efficiency of the proposed methods. As a result, the proposed sen-
sitivity reanalysis methods are proved to be more efficient with large scale problems and the accuracy of
modified Degrees of Freedoms (DOFs) can be guaranteed as well.

1. Introduction

The Sensitivity Analysis (SA) is to evaluate the derivative of design
variable. The application of the SA has been extended to the model
updating, and damages monitoring or identification and design opti-
mization, etc. [1–5]. In the structural optimization, the SA is used to
provide objective and constraint functions of the first or the second
derivative information. Generally, the SA is an efficient procedure to
improve the accuracy, efficiency and applicability of the algorithm [6],
and it can also be used to:

1. Provide the gradient information for approximation technology;
2. Assess the effect of structure properties on the structure response;
3. Provide the search direction in design optimization problems;
4. Generate the approximations response of optimization structure.

The analytic method and finite-difference method (FDM) are fun-
damental SA methods for the static problem [7]. The analytic method
includes direct method (DM) and adjoint-variable method. The DM is
costly due to complex and substantial derivation processes [8,9].
Therefore, the semi-analytical method has been proposed to overcome
these deficiencies [10,11]. Compared to the DM, the semi-analytical
method is more efficient but less accurate. Subsequently, several ap-
proaches have been made to eliminate the inaccuracies of the semi-
analytical method and to extend the semi-analytical method to the
multidiscipline. Moreover, the refined semi-analysis method is

suggested and applied to linear, linearized buckling, nonlinear, limit
point analyses [12,13]. Wang et al. proposed an improved semi-ana-
lytical method based on secant stiffness matrix for geometric nonlinear
problem [14]. Deriving from the DM, the other analytic methods, such
as adjoint-variable method [15], are capable of avoiding the derivation
to the implicit variable. Additionally, the improved adjoint-variable
method has been applied to nonlinear structures efficiently [16]. The
implementation of FDM is much easier than another fundamental SA
method [17]. However, the large truncation errors and the disturbance
variables cannot be well controlled. Therefore, the derived methods
such as complex step method [18,19] have been proposed to avoid the
inherent errors in FDM. The complex variable sensitivity method [20],
which solves the step size issue in the complex step method of higher
order derivatives, was suggested afterward. Additionally, there are also
several other derived SA methods. For instance, the SA method beyond
the standard computation of the response derivatives, was proposed
based on singular value decomposition [21,22]. The pseudo-analytical
sensitivity analysis method [23], which is almost analytical, was pro-
vided for the shape optimization of continuum structures.

In the SA procedure, repeated solutions from full analysis usually
require much computational effort. To alleviate this difficulty, a
number of approaches of reanalysis have been suggested. One of the
most popular approximate reanalysis methods is CA method [24–26].
Kirsch applied the CA method to linear static problems, geometrical
change and engineering problem [27–30]. Moreover, the CA method
was also extended to the SA for static [24,31], dynamic [32] and
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vibration problems [31]. Unlike common approximations of the struc-
tural sensitivity, Kirsch and Papalambros [33] used the results of the
initial design to solve the modified displacement and structure sensi-
tivity, which firstly verified the uniformity of the CA reanalysis in
displacements and displacement derivatives. However, the cost of
computational time is large. To reduce the repeated computation in the
SA, Kirsch et al. applied the combination of the CA method and dif-
ferential method to sensitivity reanalysis [34,35]. However, only the
sensitivity of the initial structure is solved in their method. Based on the
uniformity of CA method in displacement and displacement sensitivity,
Zuo et al. proposed an efficient CA sensitivity reanalysis to calculate the
modified structure sensitivity for both static and vibration problems
[36,37]. Zuo's method may largely increase efficiency with slight loss of
accuracy of the sensitivity result.

However, the repeatedly matrix decomposition information which
increases memory consumption significantly is required in the CA,
especially for large-scale mechanical systems. Other reanalysis techni-
ques, such as block-based reanalysis method [38] and substructuring
approaches [39–41], have been successfully applied to the analyses of
regular large-scale mechanical systems with locally or globally. Sub-
sequently, the IC method [42] was proposed by Huang et al. for local
modification of large-scale structure, which only requires the initial
solution as an input. Moreover, it has been successfully applied to the
practical complicated applications [43], while the IC method is not a
universal numerical method, for instance, the case of local modification
of material parameters inside the structure, the corresponding results
cannot be reflected totally by the modified stiffness matrix [44]. Based
on the IC method and the Sherman-Morrison-Woodbury (SMW) for-
mula, Huang et al. also developed an exact reanalysis method named
IFU method, which can efficiently solve the boundary modifications
[44]. It is well known that the SMW formula [45,46] is the most basic
DM which can obtain the theoretical solution, and it has been greatly
extended to multiple rank-one and multiple-rank modifications [47,48].
Thus, there is no theoretical error between IFU reanalysis and complete
analysis. However, the IC and IFU methods are not applied to the SA
yet. Therefore, the SA formulations of the IC and IFU are deduced based
on the uniformity of reanalysis procedures for evaluating displacements
and first-derivatives of displacement in this study. Moreover, we hope
to compare the performances of the CA, IC and IFU and investigate the
characteristics of these reanalysis-based SA methods.

The rest of this paper is organized as follows. The CA sensitivity
method proposed by Zuo et al. is briefly reviewed firstly in Section 2.
The IC and IFU are briefly introduced and corresponding sensitivity
reanalysis formations are deduced in Section 3 and Section 4, respec-
tively. The efficiency is demonstrated by the Number of Algebraic
Operations (NAO) of three sensitivity reanalysis methods in Section 5.
Three numerical examples are employed to demonstrate the accuracy of
three sensitivity methods in Section 6. The conclusion is summarized in
the final section.

2. CA sensitivity reanalysis

The CA sensitivity method proposed by Zuo et al. [37] has been
successfully verified for static and vibration problems, which makes up
the deficiency of the Kirsch's method in the frame of guaranteeing the
accuracy and efficiency. The procedure of CA sensitivity method for
static is briefly reviewed to facilitate performance comparison with the
proposed sensitivity reanalysis procedures.

Given an initial design, including the initial stiffness matrix K0 and
the load vector, the static displacement r0 can be computed by the
equation

=K r F0 0 (1)

where the chosen design variable is unrelated to the load F. The initial
displacement sensitivity ∂r0/∂xi with respect to the ith design variable x
can be calculated
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Assume a change in the initial design, the modified displacement
sensitivity ∂r/∂xi can be calculated by the equilibrium equations pre-
sented as
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The CA sensitivity method proposed by Zuo et al. uses the calcula-
tion of the first-order Taylor series expansion

∼
r as the modified dis-

placement r in Eq. (4).
Use Eq. (3) to solve the modified response sensitivity ∂r/∂xi, and the

required steps are outlined as follows:

(1) Construct the basis vectors of displacement sensitivity by using the
first s items from Neumann series expansion. The final iteration
form without derivation is directly given as
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The symbol of E represents the unit matrix and
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in Eqs. (5) and (6).
(2) Construct the reduced equation of the displacement sensitivity. In

the CA method, the modified displacement sensitivity can be ap-
proximated by the linear combination of basis vectors as
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Substitute Eq. (7) into Eq. (3) and pre-multiply rBT on both sides of
the equation to obtain
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Calculate the reduced equation which is consist of s dimension
linear equations. After solving for the coefficient y, substitute it into
Eq. (7), the modified displacement sensitivity ∂r/∂xi can be obtained.

In order to evaluate the accuracy of sensitivity reanalysis method,
the normalized error can be obtained as
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where ∂ ∂
∼
r x/ i is the displacement sensitivity solved by the CA method,

and ∂r/∂xi is the displacement sensitivity without reanalysis.

3. Independent coefficient sensitivity reanalysis

In this section, we proposed a novel sensitivity reanalysis in the
frame of the IC strategy. Therefore, the procedures of IC method [42]
are introduced briefly, then the corresponding sensitivity reanalysis
formulas are deduced.

3.1. IC reanalysis

Assuming that the equilibrium equations of initial design are

=K r F.0 0 (10)

where initial displacements can be obtained by whatever available
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