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A B S T R A C T

This work presents an adaptive isogeometric boundary element method (IGBEM) for the calculation of effective
thermal conductivity of steady state heterogeneities. Based on the generalized self-consistent scheme (GSCS),
some integral equation formulations which only contain the unknown temperatures on the interface are used to
calculate the effective thermal conductivity of steady state composites. In our approach, the geometries of the
inclusion and original matrix are described using NURBS basis functions. The advantage over currently used
methods is that no geometrical errors exist in the analysis process. And the geometry data in the isogeometric
GSCS model can be taken directly from CAD programs. In addition, based on the upper bound of the relative
error of the Gaussian quadrature formula, an adaptive integration method is used to compute the boundary
integrals, which makes the computation of the integrals easier and more efficient at optimal computational cost.
The comparisons between the results obtained by the present method and the existing counterparts are carried
out and the good agreement can be observed.

1. Introduction

Composite materials are being used increasingly in a variety of
modern engineering applications and this trend is likely to continue.
The reason is that many composite materials possess a number of highly
desirable engineering properties that can be exploited to design struc-
tures with high demand on their performance. Therefore, analysis of the
effective properties of composite materials has received considerable
attention in scientific community [1]. Many theoretical models, such as
differential scheme [2], modified Eshelby's model (MEM) [3], self-
consistent method (SCM) [4] and the generalized self-consistent scheme
(GSCS) [5], for predicting the effective properties of composites have
been presented. In [6,7], the SCM was applied to a composite reinforced
with spherical fillers, which determines the elastic constants of the
composite by embedding only one filler into an infinite domain with the
composite property determined. The GSCS, closely related with the
SCM, has been proposed by Christen and Lo [5]. Main idea of the GSCS
is in the assumption that the particle surrounded by the matrix material
is embedded in an effective medium of unknown properties. This
method can yield better results than the SCM [8].

The finite element analysis of the GSCS for solving the elastic-plastic
heterogeneous problems, inverse problems and mechanical degradation
of fibrous composites was carried out by Lefik et al. [9] and Boso et al.
[10,11]. This method is based on two separated finite element models,

i.e. a fine heterogeneous model and a coarse homogeneous model. The
effective material properties of a coarse homogeneous model are
iteratively computed enough to close the response of the fine hetero-
geneous. The disadvantage of this method is that it requires to dis-
cretize the whole computation domain and more fine meshes near the
interfaces, i.e. the inclusion and the original matrix as well as the ori-
ginal matrix and the effective matrix, are needed. Therefore, a huge
computer memory is needed to store the related finite element in-
formation. And lots of computer execution time is required to calculate
the effective properties of composited material. Due to the merits of
high accuracy and only the boundary description of the problem, the
boundary element method (BEM) has been widely used to deal with the
thermal conduction problems [12–13]. In [12], each region with dif-
ferent heat transfer properties was taken as a piecewise homogeneous
in a heterogeneous medium. The resulting non-square global system
matrix was solved by the singular value decomposition method. In [13],
some new integral equation formulations suitable for steady state
thermal conduction were presented to calculate the effective thermal
conductivity of steady state problems. These equations only contain the
unknown temperatures on the interface. Boundary face method was
used to deal with thermal conduction problems in [14]. And a large
number of open-ended tubular shaped holes of small diameters were
studied. In numerical process, a new meshing scheme was adopted to
discretize the holes of which the exact geometry remained.
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In 2005, Hughes et al. proposed the ``Isogeometric Analysis'' (IGA)
paradigm [15] as a means to perform finite element analysis directly
from computer aided design data, for three-dimensional regions. The
first paper known to the authors to propose isogeometric approxima-
tions dates back to 1982 [16], although the approach was significantly
different from the 2005 paper of Hughes et al. Several methods were
later devised in order to alleviate the difficulties existed in the original
version of IGA. Particularly the lack of an automatic parameterisation
to build the approximation within the domain was addressed through
(a) special parameterisation techniques, for example based on varia-
tional harmonic methods [17]. Xu et al. proposed a method to para-
meterize the computational domains [18]. Xu et al. also devised ana-
lysis-aware parameterisation methods for single [19] and multi-domain
geometries [20]. The stability issues associated with parameterization
was studied in [21]. (b) geometry independent field approximation
(GIFT) where the spline spaces used for the geometry and the field
variables can be chosen and adapted independently while preserving
geometric exactness and tight CAD integration [22]. (c) isogeometric
boundary element methods (IGBEM), proposed in [23,24] and was later
generalized to 3D T-spline geometries in [25]. IGBEM allows stress
analysis directly from CAD, without any mesh generation or regenera-
tion [26] and was recently used for damage tolerance assessment of
complex structures, directly from CAD [27,28]. IGBEM was also used
for 2D and 3D shape optimizations in [29,30].

A review of IGA was proposed in paper by Nguyen et al. [31] and a
review of recent efforts to streamline the CAD-analysis transition pi-
peline was provided in [32,33]. Note that a wide range of other
methods, relying also directly on CAD are also aiming at CAD-analysis
integration. One should, in particular, refer to the work of Sevilla et al.
[34], Moumnassi et al. [35] and Legrain et al. [36–38]. But significantly
complicated adaptive h-refinement since tensor product approxima-
tions are still common place. This means that the approximation must
be refined everywhere at once in the domain. Alternatives to this were
proposed by [22,39], where the geometry and the field approximations
are independent. Similar ideas were proposed earlier by Sevilla et al.
[34] and allowed to obtain exact boundary representation, as in IGA,
but without requiring the interior discretisation to be tied to the geo-
metry representation, offering more flexibility. A second difficulty en-
countered by IGA is the need for an interior parameterisation to be
constructed from the CAD data, which only provides boundary in-
formation. Significant work was already performed to achieve this,
notably [40] where collocation methods/meshfree approximations are
constructed within the domain whilst preserving geometry exactness.
Finally, isogeometric boundary element methods [23,24] are probably
the best suited candidates to overcome this interior discretisation ob-
stacle, since only boundary data is required for analysis, which enables,
for example, stress analysis [23,25], acoustic problems [41], potential
problems [42,43] and damage tolerance/crack propagation analysis
[27] to be performed without any mesh generation step, directly from
CAD.

In this paper, the adaptive integration scheme based on sub-division
technique presented in [44] is coupled with the IGBEM to control the
numerical error of the integration. Adaptive scheme accounts for nearly
singular and singular integrals existing in BEM problems [25,43]. In
[45,46], an adaptive scheme was introduced for fracture problems.
Cirak et al. proposed in 2000 a method based on subdivision surfaces
for thin-shell finite element analysis [47]. In 2002, Cirak et al. [48] also
proposed an integrated modeling FEA and engineering design approach
for thin-shell structures using subdivision surfaces. This work is con-
cerned with the calculation of the effective thermal conductivity of
steady state heterogeneities using an adaptive IGBEM.

The composite considered in this work is assumed to be misoriented
in space, namely, statistically homogeneous [49,50]. Following the
method in [13], the integral equation formulations which only contain
the unknown temperatures on the interface are used in the im-
plementation of the IGBEM. And a heat energy computation

formulation which only contains the interface integrals is adopted to
calculate the system heat energy. Based on the GSCS model, some nu-
merical examples are solved. The present results are compared with the
exact solutions or upper and lower bounds of solutions. The results
show the accuracy and effectiveness of the present method.

A short description of the contents of this paper is as follows.
Section 2 introduces necessary background concepts about GSCS and
the differential formulations of the physical problem. Section 3 presents
the formulations for isogeometric GSCS model. Section 4 gives the
adaptive integration scheme for boundary integrals on isogeometric
element. In Section 5, the computation process of the isogeometric
GSCS is described. Several numerical examples are given in Section 6 to
verify the efficiency and accuracy of the present method. Finally, we
present the conclusions for our work.

2. Problem statement

GSCS takes into account the interaction between matrix and inclu-
sions by considering a representative unit cell inclusion, i.e., an inclu-
sion and a surrounding matrix, which is itself embedded in the infinite
effective matrix. Owing to considering the full range of the volume
fraction of inclusion, it gives a physically realistic model of inclusion to
inclusion interaction for two-phase system. The generalized self-con-
sistent model of the presented problem is shown in Fig. 1, where the
geometry of the model is described by NURBS. More details about
principles of GSCS model can be found in [5,9–11,13].

As shown in Fig. 1, assume that Γ1 and Γ2 represent the inclusion-
original matrix interface and the original matrix-effective matrix in-
terface, respectively. The heat fluxes along x, y and z axes are indicated
by qx,qy and qz, respectively. Here, we focus our attention on the nu-
merical implementation of the adaptive IGBEM for calculation of ef-
fective heat conductivity of steady state heterogeneity. Thus, only some
conclusions are given, more details about basic idea and derivation
process of boundary integral equation can be found in [13].

According to several boundary integral equations obtained by the
location of the source points and continuity condition [13], the fol-
lowing formulas which only contain the unknown temperatures on the
interface can be obtained. When the source point P is on Γ2, we have the
following integral equation:
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where kI, kM and kE are the thermal conduction coefficients of the

Fig. 1. The GSCS model with single inclusion.
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