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A B S T R A C T

This study introduces an enhanced approach for concrete failure criterion, which is strongly needed for a rea-
listic simulation of concrete behavior, by employing machine learning approaches instead of the traditional
models of failure surfaces. Since the shape of concrete failure surfaces is not exactly known, a general shape
function for verification purposes of the machine learning approaches is introduced. Artificial neural networks,
support vector machines, and support vector regression are adapted to model realizations of this general shape
function with different noise levels. After the successful fitting of these surfaces, the algorithms are employed to
model the failure surface of C25 concrete starting from 88 experimental tests. The three approaches are able to
fit the experimental data with low error and are compared to one another. Drucker–Prager and Bresler–Pister
surfaces are solved for the same experimental data and compared with the support vector regression surface. The
main advantage of machine learning approaches is that they are model-free approaches which eliminate the
need of new models for new concrete types.

1. Introduction

Concrete strength is still described by a single value of compressive
strength, but its complex behavior is pushing toward a more compre-
hensive and accurate description. The pure tension, shear and torsion
stresses were studied thoroughly and linked to the compression
strength. The compound stress situations were also studied in the past
decades and therefore the failure surface was proposed. Many models
were early introduced like Rankine, von Mises, Tresca and
Mohr–Coulomb [1–4]. These simple models were easy to handle with
hand calculations but were not able to describe the failure surfaces
accurately. By applying optimization algorithms more complex models
were introduced like Drucker–Prager [5], Bresler–Pister [6], Ottosen
[7] and others [8–11]. These approaches were able to describe the
failure surfaces more accurately but had two disadvantages; the com-
plexity and the limitation to a predefined model. Wai-Fah Chen states
that “No one mathematical model can describe the strength of real
concrete materials completely under all conditions. Even if such a
failure criterion could be constructed, it would be far too complex to
serve as the basis for the stress analysis of practical problems” [1]. This
statement is what this study is trying to overtake by applying machine
learning approaches.

With the development of machine learning algorithms [12,13], it

became motivating to use such approaches to develop new models for
concrete strength. Machine learning is a computer science subfield
that provides a broad range of model-free approaches classified into
three categories unsupervised learning, reinforcement learning and
supervised learning [14]. The focus in this paper is on three well-
known supervised learning approaches; artificial neural networks
(ANNs), support vector machines (SVMs) and support vector regres-
sion (SVR), in order to study their suitability for modeling concrete
failure surfaces especially with respect to accuracy and efficiency as
well as their potential to cope with uncertain experimental data. These
three approaches are adapted to model a concrete failure surface for
each approach. The obtained failure surfaces are compared with
Drucker–Prager and Bresler–Pister surfaces as two conventional ap-
proaches.

The goal of this study is to develop a new comprehensive, accurate
and simple failure criterion for concrete free of any predefined models
and completely depending on the experimental tests. This would be a
great step toward a more realistic analysis of concrete behavior.

2. Concrete failure surface

A material failure surface [1] is a representation of the failure limits
in three dimensional space where axes are the principal stresses σi in the
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three principal directions ni (i= 1, 2, 3). Thus, in this kind of stress
space, one is interested in the geometry of the stress rather than the
orientation of the stress state with respect to the material of the body.
Points inside the surface represent cases where concrete is still bearing
stresses and points on the failure surface determine failure states of the
concrete, whereas points outside the failure surface are stress cases that
cannot be reached.

An important property of concrete failure surface is its six-fold
symmetry. This follows from the assumed isotropy of concrete as the
labels 1, 2, 3 attached to the coordinate axes are arbitrary. The hy-
drostatic axis is the diagonal which has equal distances from all three
axes, so every point on this axis is characterized by = =σ σ σ1 2 3. The
deviatoric plane is the plane perpendicular to the hydrostatic axis.
Fig. 1b shows the deviatoric plane with the projection of the principal
axes on it. The angle θ is called the angle of similarity and it is mea-
sured from the projection of any axis on the deviatoric plane and in
both directions from =θ 0 to =θ 60. The meridian that corresponds to

=θ 0 is called the tensile meridian which is marked red. The meridian
corresponding to =θ 60 is called the compressive meridian and it is
marked blue. As a result, there are 3 compressive meridians and three
tensile meridians in the whole failure surface. Rendulic plane is the
plane where two stresses are equal e.g. =σ σ1 2 . This plane passes
through both compressive and tensile meridians.

The oldest assumptions used for concrete failure surface were the
maximum tensile stress criterion which was proposed by Rankine in
1876, shearing stress criteria of Tresca (1864) and von Mises (1913)
[4], and Mohr–Coulomb criterion (1900). These one and two-parameter
models were suitable for hand calculations but suffered from rough
approximations so they were used for specific problems only.

More complex models were proposed afterwards. Drucker and
Prager (1952) assumed a model with two parameters. Then three-
parameter models were proposed by Bresler–Pister (1958) [6] and
Willam–Warnke (1974) [15]. The development continued by increasing
the number of parameters and many 4 and 5-parameter models were
developed in the past years [7–11]. All these models had predefined
shapes and their parameters needed an optimization to fit the experi-
mental data. This was the main disadvantage of these models. Two
common conventional models are introduced in the following to be
compared later with the machine learning based models.

2.1. Drucker–Prager model

This model was developed in 1952 based on studies of soil me-
chanics [3,5] as a two parametric model. It represents a dilatation of
von Mises criteria about the influence of the hydrostatic stress

component, or a smooth approximation to Mohr–Coulomb surface. It is
described by the formula

+ − =αI J β 0σ σ1 2 (1)

where I1σ is the first invariant of the stress tensor, J2σ is the second
invariant of the deviatoric stress tensor, α and β are the two parameters
that define the surface according to the concrete properties and tests.
The main disadvantages are that the meridians are straight lines (linear)
and the cross section in the deviatoric plane is limited to circular as
shown in Fig. 2.

2.2. Bresler–Pister model

Bresler and Pister developed in 1958 [1,6] a three parametric model
assuming that the meridians have a parabolic formula and neglecting
the difference between the meridians. It was described by the formula
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where a, b, c are the three parameters, fc is the uniaxial compressive
strength tested with rigid plates, σoct is the octahedral normal stress and
τoct is the octahedral shear stress. This model has circular cross sections
in the deviatoric plane which is considered as the main disadvantage of
it (see Fig. 3).

3. Machine learning approaches

3.1. Artificial neural networks

Artificial neural networks (ANNs) [14,16–19] are an analogy of the

Fig. 1. Concrete failure surface.

Fig. 2. Drucker–Prager model.
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