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a b s t r a c t 

This research proposes an implementation of effective direct linear equation solver for mechanical multi- 

body dynamics analysis. The proposed method focuses on the solvability for any size of GPU memory 

and scalability for any number of GPUs by using BFS-based traversal. A multi-level tree is divided into 

as many sub-trees as a GPU number by using the nested dissection, each of which is assigned to each 

GPU. Balanced graph bisection, additional sub-trees, and work stealing lead to minimum idle GPU com- 

puting time. Numerical experiments have been performed to decide the optimal maximum block size. 

Three mechanical models and the other three matrices from UF collection have been solved to show the 

effectiveness of the proposed method. Two different kinds of 4 GPUs, GeForce GTX 460 and GTX TITAN 

BLACK, are involved in this experiment. The proposed method shows a good solvability even when the 

test GPU memory is dozens of times smaller than the required data size for numerical factorization. The 

proposed optimization algorithm presents a good scalability on the number of GPUs. The performance 

results are compared with those obtained from CHOLMOD included in SuiteSparse library. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

CAE (Computer Aided Engineering) has been widely utilized not 

only in a mechanical field but also in a number of engineering ter- 

ritories. Instead of a high cost experiment of real mechanical mod- 

els, it has become imperative to substitute them for virtual models 

containing giant unknowns and to analyze them on a high perfor- 

mance computer system. 

Modern computer system has been upgraded continuously, and 

the development enables larger and larger models to be solved. 

However, the performance improvement of a conventional com- 

puting device, CPU, has been relatively stalled by a few limitations. 

Accelerating ways using additional computing devices were intro- 

duced about 10 years ago, and now they are extensively studied in 

a variety of fields. The accelerator methodology does not need to 

replace the main system with a stronger one and also can control 

the number of computing devices when necessary. 

For example, a representative CPU manufacturer, Intel, recently 

released a self-bootable many-core CPU [1] to cope with the accel- 

erators such as GPUs. If we want to upgrade the computing perfor- 

mance of the many-core CPU, not only the same main system but 

also Omni-Path Fabric interconnect equipment has to be prepared. 

The additional system and the equipment come at a big burden. 
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That is the reason why we pay attention to taking advantage of 

GPUs, the most popular accelerator, to easily make better comput- 

ing performance while minimizing burdens. 

There are two kinds of methods that solve linear equation 

[2] , Ax = b , for implicit integration on mechanical flexible dynamic 

analysis. One is an iterative method [3] , which navigates a solu- 

tion by repetitive operations of a simple vector-vector and matrix- 

vector combination. This method has advantages that it needs 

highly small amount of data storage space and its implementa- 

tion is considerably easy [4] . The feature of low storage space is 

particularly suitable for GPU device that has limited ‘global mem- 

ory space’, which is shortly called ‘GPU memory’ hereinafter, and 

it has been applied to a wide range of industries, mechanical [5–

9] , electrics simulation [10] , finance [11] areas and the like. Mean- 

while, it requires a high quality pre-conditioner for fast conver- 

gence of the solution [12,13] . In addition, there is a potential that 

the solution may not be found at times. Those drawbacks force an- 

other solving way, direct method. 

Although the direct method [14] has also some disadvantages 

that it calls for far more computational complexity as well as much 

larger data storage space than the iterative one, it could obtain a 

solution in most cases with finite number of floating-point opera- 

tions unless the matrix are exactly or almost singular. The method 

can conduct stable finite element analysis [15–17] . There have 

been several studies on implementing the direct linear solver on 

a GPU [18–22] , but those studies are less activated than that of the 

iterative method because its implementation has to overcome 
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hardship such as slow PCI-Express link speed and independent 

memory space. And most of the studies focus on only a single 

GPU environment. CHOLMOD [23] is a representative direct linear 

equation solver routine supporting multi-GPU. As a result, the per- 

formance results of the proposed method are compared to those 

obtained from CHOLMOD. 

The rest of this paper is organized as follows: Section 2 sum- 

marizes an implicit integration method for the constrained me- 

chanical systems. BFS-based nested dissection and its numerical 

factorization implementation are presented. Section 3 deals with 

a multi-level tree segmentation method to develop a parallel algo- 

rithm for multi-GPU. The parallel algorithm is optimized to have an 

effective GPU scalability. The various block sizes for the numerical 

factorization and parallel algorithm have been numerically tested. 

A selected optimal maximum block size has been applied to the 

proposed parallel algorithm in Section 4 . The performance results 

are discussed and compared to those obtained from CHOLMOD. 

Conclusions and future work are drawn in Section 5 . 

2. Linear equation solver 

2.1. Equation of motion 

The constrained mechanical system is often represented as DAE 

(differential-algebraic equation). A solution of DAE is more diffi- 

cult than that of ODE (ordinary differential equation). This study 

chooses an implicit numerical integration method to solve DAEs. 

Kinematic constraints including their derivatives and equations of 

motion are solved simultaneously [24] . The equations of motion for 

a constrained mechanical system can be described as 

v − ˙ q = 0 (2.1) 

F ( q , v , a , λ
)

= 0 (2.2) 

�(q , t ) = 0 (2.3) 

where q is the generalized coordinate vector in Euclidean space 

R 

n , v is the generalized velocity vector in R 

n , a is the generalized 

acceleration vector in R 

n , λ is the Lagrange multiplier vector for 

constraints in R 

m , � represents the position level constraint vec- 

tor in R 

m , and the Jacobian �q ∈ R 

m × n is assumed to have full 

row-rank. Successive differentiations of Eq. (2.3 ) yield velocity and 

acceleration level constraints, 

�̈ · ( q , v , t ) = �q v + �t = �q v − ν = 0 (2.4) 

�̈( q , v , a , t 
)

= �q a + 

d 

dt 
( �q ) v + �tt = �q a − γ = 0 (2.5) 

Equations from 2.1 to 2.5 comprise a system of over-determined 

differential-algebraic equations (ODAE). An algorithm based on 

backward differentiation formulas (BDF) to solve ODAE is described 

as 
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where ζ1 ≡ 1 
b 0 

k ∑ 

i =1 

b i v n −i and ζ2 ≡ 1 
b 0 

k ∑ 

i =1 

b i q n −i in which k is 

the order of integration, and the b i are BDF coefficients. 

Fig. 1. Flow chart of DAE solution scheme through implicit numerical integration. 

x = [ a T v T q 

T λT ] 
T 

and the columns of U i ∈ R 

n × ( n − m ) ( i = 1, 

2) constitute bases for the parameter space of the position and 

velocity level constraints. 

The matrices U i are chosen so that [ 
�q 

U 

T 
i 

] is nonsingular. There- 

fore, the parameter space spanned by the columns of U i and the 

subspace spanned by the columns of �T 
q constitute the entire 

space R 

n . 

Eq. (2.6) can be solved since the number of equations and that 

of unknowns are the same. Newton’s numerical method can be ap- 

plied to acquire the solution x [25] . 

H 

i 
x �x 

i = −H 

i (2.7) 

x 

i +1 = x 

i + �x 

i i = 1 , 2 , 3 , . . . (2.8) 

Eq. (2.7 ) is represented as Ax = b , a linear equation problem. 

4 steps are needed to solve the problem in direct method. It de- 

fines sparse matrix structure, performs appropriate reordering to 

contain the outbreak of fill-ins in factorization process, and does 

factorization numerically. Finally, a solution is acquired by fore-, 

backward substitution of a RHS (Right Hand Side). Fig. 1 shows a 

work flow of an implicit numerical integration to solve DAEs along 

with the linear equation solver steps. 

2.2. Nested dissection 

The numerical factorization is the most time-consuming step 

among all the steps of linear equation solver. The time consump- 

tion of the numerical factorization step is greatly affected by 

adopted reordering method. 

A mechanical system model consists of various kinds of el- 

ements. The model can be mapped as a Graph ( G ) containing 

Vertex ( V ) and Edge ( E ) [26] . Fig. 2 (a) depicts a model and its 

corresponding Graph. A group of vertices splitting a graph into 
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